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      Using Multiple Linear Regression (MLR) to predict the real cost of a car model 
Tien Anh Nguyen 

 

Abstract—In this paper, an analysis of basic car characteristics is taken into account to predict 
the real price of different automobile models. Multiple linear regression (MLR) analysis was 
performed on the data using structural equation modeling with JMP 17. My methodology is 
divided into three main steps: the first uses various statistical analysis techniques to evaluate 
and preprocess the data and collected variables; the second involves choosing the most 
significant variables using multiple methods. The final phase uses RMSE, AICc, BIC, Mallow’s 
Cp, and Adjusted 𝑅2 to compare the outcome of many MLR models built using the chosen 
variables. The collected findings indicate that the model produced with variables chosen using 
the Stepwise Selection approach performs better than the models utilizing other approaches, 
having the lowest AICc, RMSE, and highest Adjusted R2. In the results, a reasonable regression 
model acquired a remarkable ability to predict the price of car models.  
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——————————  ◆◆◆  —————————— 
1. Introduction 

In our constantly evolving world, owning a car can be important for many people, as it 
provides a convenient and flexible mode of transportation. However, an automobile is an 
investment that lasts a lifetime; therefore, consumers need to make rational financial decisions. 
This study will facilitate potential customers in making better educated decisions that fit their 
budget and lifestyle, by allowing them to take into account the potential purchase price. 
Estimating a car model's true cost is also crucial for manufacturers in identifying the precise cost, 
which makes it possible to identify cost drivers for optimization.  

This study will build a linear regression using several independent variables to find 
important aspects influencing a car model's market value and predict the real cost of future car 
models. Linear regression analysis is a widely applied statistical method for modeling both time-
series and cross-sectional data. It allows for the identification and characterization of 
relationships between different variables. [1] For this study, car models from various brands will 
be examined within their basic properties, and the data will be gathered from a dataset by Joan 
Pau Gutiérrez Pascual through Kaggle. [2] The dataset consists of 425 vehicles and their basic 
characteristics, including such: type of car (sport, SUV, wagon, minivan, pickup); horsepower; 
number of cylinders; miles per gallon; physical size (length, width, weight), and wheelbase.  

This study is outlined as follows: Section II covers relevant works, Section III covers 
methodology, and Section IV includes findings and commentary. The paper's conclusion is 
provided in Section V, along with recommendations for more study and advancements. Finally, 
Section VI expresses my gratitude to the individuals who have assisted me in accomplishing this 
work.  
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2. Literature review 
Noor and Jan [3] developed a multivariate linear regression model to forecast car prices. 

The authors were able to attain an R2 of 98% using the configuration they were provided. Muti 
and Yildiz [4] also looked at the linear regression model's predictive power for used automobile 
prices. It was noted that the model's prediction success had an R2 score of 73%. 

While the above-mentioned authors only used linear regression as their main methodology, 
Pudaruth [5] attempts to achieve the same goal via different machine learning methods. The 
pricing from these approaches is quite comparable, as seen by the comparison of the forecast 
results from various methodologies. Nevertheless, it was discovered that the Naïve Bayes 
approach and the decision tree algorithm could not categorize and forecast numerical values. 

Multiple Linear Regression has also been utilized for a long time by researchers for the 
analysis and prediction of real estate prices. Kaushal and Shankar's [6] paper’s goal is to forecast 
home values using a variety of factors. They performed the prediction for this paper using the 
multivariate linear regression model. They evaluated their model's accuracy against that of other 
machine learning models, including decision tree regressors, Lasso, LassoCV, Ridge, and Ridge. 
With an 𝑅2  value of 84.5%, multivariate linear regression outperforms the others, which means 
that using the multiple linear regression model to forecast house prices gets the most appropriate 
and reliable findings. 

Another application of Multiple Linear Regression is in the field of education. Aissaoui et 
al. [7] presented an MLR application to construct a model to predict the performance of pupils. 
This study stands out because, while most of them create regression models using all of the 
features of the students, they have developed a multivariate linear regression model that only 
includes the most significant factors. The findings demonstrate that the model produced with 
variables chosen from the Multivariate Adaptive Regression Splines approach performs better 
than the other models. 

 
3. Methodology 

3.1 Description of the problem 

In many cases, the objective of statistical analysis within research is to delineate the 
relationships between multiple variables [1] Through establishing a linear relationship based on 
the observed data, multiple linear regression “aims to model the relationship between two or more 
independent variables and a dependent variable”. [7] The theoretical basis of MLR posits that 
each unit change in the independent variable leads to a consistent change in the dependent 
variable. This is how a multiple linear regression model may be expressed [8]: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+. . . +𝛽𝑝𝑋𝑝 + 𝜀 

 where: 
- Y: the predicted value of the dependent variable 
- 𝛽0: the y – intercept, also referred to as the value of y when all the other parameters are 

equal to 0 
- X for i = 1,2,..,p, are the independent variables, also referred to as covariates 
- B for i = 1,2,…,p are the regression coefficients, also known as the change in Y for a unit 

change in Xi (given all variables stay the same) 
- 𝜀 is an error term that represents the difference in the model and an observed value of Y 

Table 1 will list all the dataset variables included in this paper. 
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 Table 1. Dataset variables 

Attribute Meaning Attribute Meaning 

Name Vehicle name and model Rear_wheel Is it a RWD? (binary: FALSE 
or TRUE) 

Sports_car Is it a sports car? (binary: 
FALSE or TRUE) 

Msrp Real cost (numeric) 

Suv Is it a SUV? (binary: FALSE or 
TRUE) 

Eng_size Engine size in Liters (numeric) 
 

Wagon Is it a wagon? (binary: FALSE 
or TRUE) 

Ncyl Number of cylinders (numeric: 
from 4 to 8) 

Minivan Is it a minivan? (binary: FALSE 
or TRUE) 

Horsepwr Horsepower of the car 
(numeric) 

Pickup Is it a pickup? (binary: FALSE or 
TRUE) 

City_mpg City consumption (in miles per 
gallon) 

All_Wheel Is it a 4x4? (binary: FALSE or 
TRUE) 

Hwy_mpg Highway consumption (in 
miles per gallon) 

Weight Weight (in pounds) (numeric) Wheel_base Wheel base (in inches) 
(numeric) 

Length Length (in inches) (numeric) Width Width (in inches) (numeric) 

 
My methodology can be briefly explained via the following diagram (Fig. 1): 
 

 
Fig. 1. My methodology 

 
The following subsections will further elaborate on the different steps carried out in my analysis. 
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3.2 Preliminary Processing 

Preprocessing the data and verifying the Multiple Linear Regression method’s assumptions 
necessitate a preliminary analysis before identifying the most crucial variables. This step is of 
significant importance because if data is not cleaned thoroughly before analysis, the entire data 
flow becomes "garbage in, garbage out" [9] The preprocessed dataset is prepared for model 
construction. For training and testing, the division ratios in this paper are 80% and 20% of the 
total dataset, respectively. The values in the training and testing datasets are randomly selected. 
Qualitative data is turned into dummy variables, with the presence in a category taking a 1, and 
the absence is indicated by a 0. 
 
Outliers Analysis and Removal 

As outliers are generally regarded as values that are exceptionally far from the mass of the 
data, they can create many unfavorable consequences, such as distorting the outcome of the 
analysis. In this study, scatterplots are used to find highly skewed and uncommon values. 
Although outliers in this study are natural, as they reflect the true variability of the data, they still 
contribute to the distortion of the final result; hence, they must be removed. On top of that, in this 
particular dataset, there is some data not reported and without values; they must also be 
eliminated. Originally, the dataset had 425 unique values, but after cleaning, this paper will only 
analyze 380 values.  
 
Testing the null hypothesis 

Null hypothesis testing is “a formal approach to deciding between two interpretations of a 
statistical relationship in a sample”. [10] The null hypothesis, often represented by the symbol Ho, 
is one explanation. According to the hypothesis, any association discovered in the sample is only 
the result of sampling error, and there is no correlation in the population. [10] For every variable, 
I have constructed a basic regression model with the real value of a car in this stage. To reduce 
the possibility of a Type I error, I decided to keep the variable if the p-value was less than 0.05.  

3.3 Features Selection 

Forward Selection 
The variable that has the highest correlation with the dependent variable is chosen first to 

be incorporated into the model using a forward selection process. Following selection, the variable 
is evaluated using a predetermined set of criteria. If the first variable selected meets the inclusion 
criteria – that is, if the variables that are not part of the equation are selected based on their 
statistics – then the forward selection method proceeds. The procedure concludes when no more 
variables meet the requirements for entrance. [11] While Mallow’s Cp or AICc is usually utilized 
as a stopping rule, in this paper, a p-value threshold of 0.05 will decide which variable can enter 
the model. However, this method is not without flaws. A difficulty with forward selection is that it 
has trouble with multiple testing, which can lead to the selection of a lot of irrelevant variables. 
Certain variables may have partial correlations with other variables, but not with the goal. This 
suppresses non-relevant errors in those variables, strengthening the model. [12] 
 
Backward Selection 

This technique is quite similar to the Forward Selection algorithm in principle, but it differs 
in that it removes variables one at a time depending on the rise in p-value after starting from the 
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whole model (whenever it is possible to estimate the full model). [13] Again, a p-value of 0.05 acts 
as a hurdle the variable must overcome to not be rejected from the model. Backward Selection 
has two main drawbacks. Firstly, when additional variables are eliminated from the model, certain 
variables may no longer be able to minimize error due to overlap or interaction in their capacity to 
explain variation. Secondly, Backward elimination is rigid because once a feature variable leaves 
the model, it is never added back. A variable that was included at the beginning of the model may 
eventually surpass the stopping criterion as other variables are eliminated, but it will always 
remain outside of it. [14] 
 
Stepwise Selection 

The stepwise selection method differs from the methods above in that, following the entry 
of a variable, all previously entered variables are analyzed to see whether any should be 
eliminated based on the specified removal criteria. Every step of the stepwise process involves 
investigating the "least useful variable currently in the equation." One factor that could have been 
the best contender for admission early on in the process may become unnecessary later on due 
to the correlations it now has with other variables in the regression. [11] This method avoids the 
errors of the previous techniques as it may be applied to the evaluation of variables, enabling the 
investigation of the traits of variables serving as predictors in various models.  
 
Best Subsets 

Regression analysis using best subsets regression is an experimental model development 
technique. It contrasts every model that might be developed using a given set of predictors. For k 
predictors, the complete set of models of any size sums up to 2k -1, whereas the best-subset 
models total the same as the number of predictors. [15]  For example, all subsets of four variables 
have fifteen possible regression models; however, only four optimal models – the best model with 
one variable, the best model with three variables, and the best model with all variables – are found 
for each subset based on certain criteria. Nevertheless, it is not always practical to employ best-
subsets procedures, since they need a lot of computing power to produce all conceivable 
regressions, especially when the number of predictors is large. [15] 
 
4. Results 

4.1 Models building 

I will build several linear regression models using the variables that were selected as the most 
important results of the methods in the preceding section. Next, I will use the following set of 
criteria to compare the models' results. The model that can choose the most correct variables has 
the highest performance accuracy. Table 2 shows the built model using each different method: 

Table 2. Models’ evaluation metrics 

Features 
Selection 

Variables chosen The built model 

Forward 
Selection 

all_wheel, rear_wheel, 
horsepwr 

-9026.47 + 4846.22*all_wheel + 7175.88*rear_wheel + 
181.04*horsepwr 
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Backward 
Selection 

sports_car, all_wheel, 
rear_wheel, horsepwr, 
hwy_mpg, width 

28268.58 + 5624.77 * sports_car + 3259.85 * all_wheel + 
7467.43 * rear_wheel + 163.89 * horsepwr + 849.69 * 
hwy_mpg + 13.76 * weight – 1480.74 * width 

Stepwise 
Selection 

sports_car, all_wheel, 
rear_wheel,  eng_size, 
ncyl, horsepwr, 
hwy_mpg, weight, 
width 

20977.41 + 6218.74 * sports_car + 3117.89 * all_wheel + 
6476.23 * rear_wheel + 2820.25 * eng_size + 2368.30 * 
ncyl + 157.93 * horsepwr + 844.63 * hwy_mpg + 13.54 * 
weight – 1412.54 * width 

Best 
Subsets 

sports_car, all_wheel, 
rear_wheel,  eng_size, 
ncyl, horsepwr, 
hwy_mpg, weight, 
width 

30538.05 + 6209.08 * sports_car + 3418.84 * all_wheel + 
6697.56 * rear_wheel + 1193.93 * ncyl + 152 * horsepwr 
+ 881.98 * hwy_mpg + 13.18 * weight – 1555.52 * width 

 

4.2 Evaluating the build models’ performance 

Akaike Information Criterion Corrected (AICc) 

AIC model selection criterion attempts to quantify the relative quality of several models while 
penalizing for model complexity. [16] AIC achieves a balance between model fit and complexity 
by taking into account both the probability and the parameters’ numbers. It promotes models that 
minimize complexity, avoiding overfitting and lowering the possibility of collecting noise or 
extraneous characteristics in the data while yet providing a good match for the data.  However, 
there is a significant chance that AIC will choose models with excessive parameters when the 
sample size is small, or that AIC will overfit. Hence, AICc was created as a solution to this possible 
overfitting; it is “AIC with a correction for small sample sizes”. The lower the AICc, the better fit 
the model is compared to others. [17]. AICc can be written as below: 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘2 + 2𝑘

𝑛 − 𝑘 − 1
 

where: 

- N is the sample size 
- K is the number of parameters 

 

 

 

 

Bayesian Information Criterion (BIC) 

The Bayesian Information Criterion (BIC), similar to AIC, is another model selection criterion that 
considers both model fit and complexity. In contrast to AIC, BIC offers a larger penalty for model 
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complexity and is based on Bayesian principles. [18] Similar to the AICc, the lower the BIC, the 
better the model is.  The following is the formula for BIC: 
 

𝐵𝐼𝐶 =  −2 ∗ 𝑙𝑜𝑔 (𝐿)  + 𝑘 ∗ 𝑙𝑜𝑔 (𝑛)  
where: 

- L represents the maximized likelihood of the model, which is commonly measured as the 
sum of squared errors (SSE) 

- N is the sample size 
- K is the number of parameters 
 

Adjusted R2 

Adjusted R2 is a corrected “goodness-of-fit” (or model correctness) measure. A problem 
with the R2 is that it always rises as additional effects are added to it. The Adjusted R2 considers 
this overestimation. If a variable has no beneficial effect on the model, the adjusted R2 may go 
down [19] The more closely the model fits the target field’s values, the closer its Adjusted R2 is to 
1. A number that is closer to 0, on the other hand, denotes a subpar model with no predictive 
value. Adjusted R2 can be written as below: 

     𝐴𝑑𝑗 𝑅2 = 1 −
(1−𝑅2)(𝑛−1)

(𝑛−𝑘−1)
 

where: 
- N is the sample size 
- K is the number of parameters 
- R2 is the proportion of variation in the target variable that is explained by the model.  

 
Mallow’s Cp 

Mallow’s Cp assists in finding a crucial equilibrium regarding the quantity of the model’s 
predictors. Mallows’ Cp compares the model’s overall accuracy and bias against models that just 
incorporate some of the predictors. The constant (p) plus the number of predictors in the model 
make up Mallows' Cp. The lower the Mallow’s Cp is to the parameter, the more accurate the 
model is. When Mallow’s Cp value is low, it means that the model has little variance and may be 
used to estimate the actual regression coefficients and forecast the responses in the future.  [20] 
Mallow’s Cp can be calculated as: 

𝐶𝑝 =
𝑅𝑆𝑆𝑝

𝑆2
− 𝑁 + 2(𝑃 + 1) 

where: 
- RSSp: The residual sum of squares for a model with p predictor variables 
- S2: The residual mean square for the model (estimated by MSE) 
- N: The sample size 
- P: The number of predictor variables 

 

 

Root Mean Square Error (RMSE) 

RMSE is usually understood as “the square root of the mean of the square of all errors”. 
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Because it is thought to be a better “general-purpose error metric for numerical predictions”, 
RMSE is commonly employed. [21] RMSE is a useful statistic for evaluating prediction errors 
between models or model setups since it is size-dependent. [21] The model is better if the RMSE 
is smaller. RMSE can be interpreted as below: 
 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑥 − ŷ𝑥)2

𝑁 − 𝑃
 

 
where: 

- 𝑦𝑥 is the actual value for the xth observation. 

- ŷ𝑥 is the predicted value for the xth observation. 
- N is the number of observations. 
- P is the number of parameter estimates, including the constant. 

Table 3 presents these values in each model built. 
 
Table 3. Models’ evaluation metrics 

Features 
Selection 

RMSE R2 Adj R2 Mallows Cp P AICc BIC 

Best 
Subsets 

8074.11 0.7398 0.7328 9 9 6406.638 6443.163 

Backward 
Selection 

8107.271 0.7367 0.7306 8 8 6408.045 6440.981 

Forward 
Selection 

8707.576 0.6923 0.6892 4 4 6447.578 6466.013 

Stepwise 
Selection 

8039.109 0.7429 0.7351 11.5245 10 6405.09 6445.19 

 
The following table shows that the model conducted via Stepwise Selection has the lowest 

RMSE, AICc, and the highest adjusted R-squared and R-squared. Even though the BIC and 
Mallow’s Cp isn’t the lowest, it is still in an acceptance range compared to other models; hence, 
this model is the most performant in predicting the cost of a certain automobile model. It can be 
concluded that the best method for building a regression model is the Stepwise Selection method, 
and the attributes that affect the price more than others are: sports_car, all_wheel, rear_wheel,  
eng_size, ncyl, horsepwr, hwy_mpg, weight, and width. Except for the car’s width, all the factors 
exhibit positive correlation coefficients, indicating that a unit increase in the width of a car will 
decrease the final car, keeping all the other explanatory variables unchanged in the model. This 
model has achieved great complexity while still managing to avoid overfitting.  

Figure 2 conveys the relations between the actual vs prediction price of the car models on 
test data of the model conducted via Stepwise Selection. The blue label indicates the predicted 
values of the cars, and the orange label indicates the real price of the cars. The graph of the two 
values reveals that the values are closely related to each other, indicating that the model is a 
relatively great example of modeling the price of a vehicle. 

https://statisticsbyjim.com/glossary/parameter/
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   Fig. 2. Relation of Actuals vs Predictions in Stepwise Selection 
5. Conclusion 

Finding the elements that influence an automobile’s real price is an exciting undertaking 
since it will enable both consumers and manufacturers to make the most rational decision. Within 
this framework, I have put forth a process that thoroughly assesses the features of a car and 
determines which are most crucial for constructing a prediction model. Our approach entails 
employing several techniques to identify the most significant variables, which are then used to 
construct various multiple linear regression models. I have discovered that the model developed 
utilizing the Stepwise Selection approach is the most performant after evaluating the 
performances of the other models. This study has two main limitations. First, the reliance on a 
community-produced dataset makes the study’s quality heavily correlated with the quality and 
accuracy of the data. Second, the dataset size is not insufficient but can include more car models 
to be a more accurate representative sample of the population. 

In future research, I would like to employ a dataset that documents even more automobile 
models and with more comprehensive data. Additionally, I would also conduct other regression 
and classification approaches besides Multiple Linear Regression.  
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