
Hyperparameter Optimization for Deep Reinforcement Learning: An Atari Breakout Case
Study

Ken Zheng

ABSTRACT

In reinforcement learning (RL), a subfield of machine learning, we train systems to perform
complex tasks through trial and error. In RL, an agent interacts with an environment, taking
actions that generate a cumulative reward. If a series of actions generates a high cumulative
reward, those actions will be favorable in the future. Some applications of RL include improving
the performance of self-driving cars, improving the performance of large language models, and
playing games like Go. While playing games might not have a direct impact on the real world,
systems like AlphaGo have helped improve our understanding of RL that aids in more real-world
applications. This study uses game completion as a test bed to better understand the underlying
mechanisms behind RL, specifically the effects of tuning hyperparameters on a model’s
performance. A Deep Q-Learning (DQN) model architecture was chosen for this analysis, and
we tuned batch size, learning rate, exploration rate, and discount factor. We hypothesized
optimizing these hyperparameters would increase the cumulative reward. These
hyperparameters were tuned to maximize the score in the game of Atari Breakout. We found
that altering the discount factor to be greater than or less than one results in a much less
effective model, whereas tuning hyperparameters that were changed caused little change to the
performance. The results of this study can be used to improve the performance of future RL
models. All code to reproduce results in this study is available at:
https://github.com/BobyWoby/Reinforcement-Learning.

INTRODUCTION

Machine Learning (ML) is a part of computer science that uses data and algorithms to make
predictions on data (1). There are 3 subcategories of machine learning: supervised,

1

https://github.com/BobyWoby/Reinforcement-Learning
https://github.com/BobyWoby/Reinforcement-Learning

unsupervised, and reinforcement (2). Supervised machine learning models are trained on
labeled data sets (1), Unsupervised models look for patterns in unlabeled datasets, and
reinforcement models improve their accuracy through trial and error (1). Reinforcement learning
(RL) mimics the way that humans learn through trial and error, and is broadly separated into 2
categories, model-based, and model-free algorithms (3). Model based methods utilize neural
networks to understand the rules of the environment they’re in, while model-free methods will
just try different actions and remember which ones returned good results (4). In this study, we
focused on model-based RL, which used Deep Q-Learning (DQN) to predict the reward for each
action taken by an agent. Following a sequence of actions taken in the training environment, the
agent will receive a cumulative reward (4). A deep neural network approximates a policy
function for the agent’s actions. This policy function is trained by the agent’s actions to maximize
the cumulative reward. DQN is useful for many different applications, especially in real-world
applications, where the final reward isn’t immediately available, such as swarm system control
(5), and self-driving cars (6).

The DQN algorithm leverages a neural network to try and predict the reward of an action, given
the current state. This neural network (policy network) is trained to yield the highest cumulative
reward. The reward is expressed by the Bellman Equation:

𝑄(𝑠, 𝑎) = 𝑟 + γ 𝑚𝑎𝑥
𝑎
𝑄(𝑠', 𝑎),

Where is the true (unknown) final cumulative reward, is the current state, is an𝑄(𝑠, 𝑎) 𝑠 𝑎
action, is the current cumulative reward, is the discount factor, and is the next state.γ 𝑠'

The Bellman Equation allows for a long-term reward to be calculated from the current reward
and a discounted value of the expected future reward, which can be predicted using the neural
network (7). Within these RL systems, there are external configuration variables that control the
training process called hyperparameters, with being one such example of a hyperparameter.γ
These hyperparameters affect how the system gets trained. Examples include the learning rate
of the neural network and the frequency in which the system leverages the neural network
(epsilon). While these variables aren’t the same as the biases and weights that are within the
neural network, they still affect the performance of the RL algorithm.

The process of hyperparameter optimization is a crucial component in refining machine learning
models, particularly in RL (8). It involves systematically exploring and adjusting these settings to
find the optimal combination that enhances the performance of the RL algorithm. To accomplish
this task, many use automated hyper-parameter optimization (HPO). HPO automatically
optimizes the hyperparameters of a model to remove humans from the loop (9).

The main objective of this analysis was to determine the extent to which tuned
hyperparameters would improve an RL algorithm’s performance as opposed to literature-based
values (7). The hyperparameters chosen for this study were batch size, the starting step for
epsilon decay, the starting epsilon, the learning rate, and .

2

RESULTS

Using a Gymnasium-based Atari Breakout game environment (9), we aimed to optimize the
performance of our DQN model through hyperparameter tuning. The model trained with an
84x84 pixel image of the game, cropped to only show the play area to decrease computation
time and to focus the model on the relevant portions of the input data.

The preprocessed data was fed in batches to a DQN based RL model to reinforce long-term
rewards, as it is trained based on the cumulative reward of the batch, rather than a single action
and instantaneous reward. Using the input data, the model was trained to predict the cumulative
reward of an action, and the algorithm picked the action that maximized this predicted
cumulative reward according to the Bellman equation.

To optimize the hyperparameters, we utilized Optuna, a powerful hyperparameter optimization
framework (11), for 100 trials. The hyperparameters tuned were (the discount factor), learningγ
rate, starting epsilon (the initial exploration rate), and the step at which epsilon would start to
decay. Optuna’s objective was to identify the set of hyperparameters that maximized the final
score, and the best performing set of hyperparameters were then compared to values found in
the literature (7). Note that Optuna’s objective of the final score differs from the RL algorithm’s
cumulative reward.

Figure 1: Reward vs Episodes Graph of the 2 Hyperparameter Sets. The plot of Mnih et al.
illustrates the performance of the literature values during the model’s training (left), while the plot
to the right shows the performance of the tuned hyperparameters during training. The orange
line shows the moving average performance of training over the last 100 episodes. The dashed
line represents the highest average score for each of the training processes. The reward
represents the in-game score that the model received on the corresponding episode. Below
each reward vs episodes graph lies the final frame of a representative episode from the trained
models, visualizing the improved performance of a tuned RL algorithm.

3

Figure 1: Reward vs Episodes Graph of the 2 Hyperparameter Sets. The plot of Mnih et al.
illustrates the performance of the literature values during the model’s training (left), while the plot
to the right shows the performance of the tuned hyperparameters during training. The orange
line shows the moving average performance of training over the last 100 episodes. The dashed
line represents the highest average score for each of the training processes. The reward
represents the in-game score that the model received on the corresponding episode. Below
each reward vs episodes graph lies the final frame of a representative episode from the trained
models, visualizing the improved performance of a tuned RL algorithm.

4

After running for 5000 episodes each, the literature based hyperparameters (7) achieved
a final moving average of 96.99, that is, for the last 100 episodes of training, the machine gained
an average score of 96.99 per game (Figure 1). The tuned machine performed significantly
better, achieving a final moving average of 132.51 (Figure 1).

Figure 2: Hyperparameter Importance Using the fANOVA Algorithm. The Y-axis shows the
calculated fANOVA importance of the hyperparameter and the X-axis shows the
hyperparameter list. The figure shows that the most important hyperparameter by far is gamma.

The tuning process revealed that the hyperparameter with the largest effect on the model’s
performance was the value, with a hyperparameter importance of 0.42 (Figure 2). We observeγ
in the data that has to be below 1 to achieve optimal results, which is in line with other workγ
(8). This scalar value, which discounts future rewards to decide how much importance is given
to the cumulative reward compared to the instantaneous reward, plays a crucial role in the
model’s ability to prioritize long-term gains effectively. The other parameters, starting epsilon,
learning rate, and the epsilon decay start point, had much lower hyperparameter importance
values, 0.04, 0.07, 0.01, and 0.04 respectively (Figure 2).

5

DISCUSSION

As shown by our experiment, there is a substantial impact of hyperparameter tuning on the
effectiveness of RL models, which agrees with other papers(13). Our study reveals that
investing time and resources into optimizing hyperparameters leads to considerable
improvements in model performance and learning efficiency, enhancing the practicality of RL
systems. This advancement is particularly crucial for high-stakes applications such as
autonomous driving, financial forecasting, and natural language processing (14-15). For
instance, in autonomous driving, improved RL models can lead to more accurate and quicker
decision-making, directly enhancing vehicle safety and operational efficiency (16). In finance,
optimized RL models can refine predictive accuracy, potentially improving investment strategies
and risk management (15). Similarly, for large language models, better-tuned RL algorithms
contribute to faster and more accurate language processing, enhanced user interactions and
application performance (17).

Our findings underscore the practical value of hyperparameter tuning in making RL systems
more viable and effective for real-world applications. But it is important to note that while our
results support our hypothesis that hyperparameter tuning enhances RL model performance,
they do not provide a definitive explanation of the underlying mechanisms, and further research
is needed to explore the underlying mechanisms by which hyperparameter tuning affects
learning dynamics and to provide deeper insights into the optimization process and its broader
implications for RL applications.

Several factors and limitations could have influenced our result. One major factor is the choice
of the RL environment used in our experiment. Different environments have varied levels of
complexity, which may result in different sensitivities to hyperparameter tuning. While our results
might be robust for our chosen environment, different environments may see differing effects of
hyperparameter tuning. Another possible limitation is the way in which our experiment measured
performance. While the average reward is a commonly used metric, incorporating additional
measures such as convergence speed and sample efficiency may provide a more holistic
evaluation of the model’s performance.

Several scientific questions remain unanswered. For example, in our experiment, we
mostly focused on hyperparameters external to the actual neural network, such as the batch
size and gamma values, but one important question for future research would be how would
tuning the hyperparameters internal to the network, such as the number of hidden layers and
the number of nodes within each layer. Another area for future research is investigating
hyperparameter tuning across different RL algorithms and environments. This could help
establish more generalized guidelines for hyperparameter tuning that can be applied across
various settings. Furthermore, looking at the impact of hyperparameter tuning on long term
stability and adaptability could provide valuable insights for real world applications.

MATERIALS AND METHODS

6

A Gymnasium environment (11) playing Atari Breakout was created. The original 210x160 RGB
image was cropped to an 84x84 pixel image around the game area in grayscale. Each transition
between frames, consisting of a state, an action, the next game state, and the individual reward,
was stored in a memory replay buffer. The input to the DQN network grabbed a random sample
of the batch size from this memory buffer to feed into the neural network. PyTorch (18) was used
as the machine learning framework for this experiment, and the neural networks used in this
experiment utilized convolutional neural networks (CNNs). To explore as many different
strategies as possible, randomness was added to the process. The policy neural network was
used a random percentage of the time. The percentage decreased as the training process
continued, related to epsilon in this experiment. After predicting the value of the next state, the
machine would try to optimize the DQN network using the Bellman equation. The optimizer used
was Adam (19) with a loss function of Smooth L1 Loss (20). To tune the various
hyperparameters for the experiment, an external library called Optuna (12) was chosen with the
fANOVA hyperparameter importance algorithm (21), running for 100 trials, with the number of
episodes for each trial being set to 2500. The implementation used for this paper can be found
at https://github.com/BobyWoby/Reinforcement-Learning.git.

REFERENCES

1. Udousoro, I. C. “Machine Learning: A Review”. Semiconductor Science and Information
Devices, vol. 2, no. 2, Oct. 2020, pp. 5-14, doi:10.30564/ssid.v2i2.1931.

2. Li, Yuxi. Deep Reinforcement Learning: An Overview. arXiv:1701.07274, arXiv, 25 Nov.
2018. arXiv.org, https://doi.org/10.48550/arXiv.1701.07274.

3. Kaelbling, L. P., et al. “Reinforcement Learning: A Survey.” Journal of Artificial Intelligence
Research, vol. 4, May 1996, pp. 237–85. www.jair.org, https://doi.org/10.1613/jair.301.

4. Shakya, Ashish Kumar, et al. “Reinforcement Learning Algorithms: A Brief Survey.” Expert
Systems with Applications, vol. 231, Nov. 2023, p. 120495. ScienceDirect,
https://doi.org/10.1016/j.eswa.2023.120495.

5. Hüttenrauch, Maximilian, et al. “Deep Reinforcement Learning for Swarm Systems.” Journal
of Machine Learning Research, vol 20, 19 Feb. 2019, p. 1,
https://doi.org/10.48550/arXiv.1807.06613

6. Wang, Letian, et al. Efficient Reinforcement Learning for Autonomous Driving with
Parameterized Skills and Priors. arXiv:2305.04412, arXiv, 7 May 2023. arXiv.org,
https://doi.org/10.48550/arXiv.2305.04412.

7. Mnih, Volodymyr, et al. Playing Atari with Deep Reinforcement Learning. arXiv:1312.5602,
arXiv, 19 Dec. 2013. arXiv.org, https://doi.org/10.48550/arXiv.1312.5602

7

https://github.com/BobyWoby/Reinforcement-Learning.git
https://doi.org/10.48550/arXiv.1701.07274
https://doi.org/10.1613/jair.301
https://doi.org/10.1016/j.eswa.2023.120495
https://doi.org/10.1016/j.eswa.2023.120495
https://doi.org/10.48550/arXiv.1807.06613
https://doi.org/10.48550/arXiv.1807.06613
https://doi.org/10.48550/arXiv.2305.04412
https://doi.org/10.48550/arXiv.2305.04412
https://doi.org/10.48550/arXiv.1312.5602

8. Adaptive Discount Factor for Deep Reinforcement Learning in Continuing Tasks with
Uncertainty - PMC. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570626/. Accessed 10 Sept.
2024.

9. Kiran, Mariam, and Melis Ozyildirim. Hyperparameter Tuning for Deep Reinforcement
Learning Applications. arXiv:2201.11182, arXiv, 26 Jan. 2022. arXiv.org,
https://doi.org/10.48550/arXiv.2201.11182.

10. Yu, Tong, Zhu, Hong. Hyper-Parameter Optimization: A Review of Algorithms and
Applications. arXiv:2003.05689 , arXiv, 12 Mar. 2020. arXiv.org,
https://doi.org/10.48550/arXiv.2003.05689

11. Brockman, Greg, et al. OpenAI Gym. arXiv:1606.01540, arXiv, 5 Jun 2016. arXiv.org,

https://doi.org/10.48550/arXiv.1606.01540

12. Akiba, Takuya, et al. Optuna: A Next-generation Hyperparameter Optimization Framework,
arXiv. 25 July 2019. arXiv.org, https://doi.org/10.48550/arXiv.1907.10902

13. Leeney, William, and Ryan McConville. Uncertainty in GNN Learning Evaluations: The
Importance of a Consistent Benchmark for Community Detection. arXiv:2305.06026, arXiv, 25
Nov. 2023. arXiv.org, https://doi.org/10.48550/arXiv.2305.06026.

14. Li, Yuxi. Reinforcement Learning Applications. arXiv:1908.06973, arXiv, 19 Aug. 2019.
arXiv.org, https://doi.org/10.48550/arXiv.1908.06973.

15. Charpentier, Arthur, et al. “Reinforcement Learning in Economics and Finance.”
Computational Economics, vol. 62, no. 1, June 2023, pp. 425–62. Springer Link,
https://doi.org/10.1007/s10614-021-10119-4.

16. Folkers, Andreas, et al. “Controlling an Autonomous Vehicle with Deep Reinforcement
Learning.” 2019 IEEE Intelligent Vehicles Symposium (IV), 2019, pp. 2025–31. IEEE Xplore,
https://doi.org/10.1109/IVS.2019.8814124.

17. Du, Yuqing, et al. “Guiding Pretraining in Reinforcement Learning with Large Language
Models.” Proceedings of the 40th International Conference on Machine Learning, PMLR, 2023,
pp. 8657–77. proceedings.mlr.press, https://proceedings.mlr.press/v202/du23f.html.

18. Paszke, Adam, et al. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. arXiv:1912.01703, arXiv, 3 Dec. 2019. arXiv.org,
https://doi.org/10.48550/arXiv.1912.01703

19. Kingma, Diederik P., and Jimmy Ba. “Adam: A Method for Stochastic Optimization.”
arXiv.Org, 22 Dec. 2014, https://arxiv.org/abs/1412.6980v9.

20. Girshick, Ross. “Fast R-CNN.” arXiv.Org, 30 Apr. 2015, https://arxiv.org/abs/1504.08083v2.

8

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570626/
https://doi.org/10.48550/arXiv.2201.11182
https://doi.org/10.48550/arXiv.2201.11182
https://doi.org/10.48550/arXiv.2003.05689
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.48550/arXiv.1907.10902
https://doi.org/10.48550/arXiv.2305.06026
https://doi.org/10.48550/arXiv.1908.06973
https://doi.org/10.1007/s10614-021-10119-4
https://doi.org/10.1007/s10614-021-10119-4
https://doi.org/10.1109/IVS.2019.8814124
https://doi.org/10.1109/IVS.2019.8814124
https://proceedings.mlr.press/v202/du23f.html
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1912.01703
https://arxiv.org/abs/1412.6980v9.
https://arxiv.org/abs/1504.08083v2.

21. Hu, Linwei, et al. Interpretable Machine Learning based on Functional ANOVA Framework:
Algorithms and Comparisons. arXiv:2305.15670, arXiv:2305.15670, arXiv, 25 May. 2023.
arXiv.org, https://doi.org/10.48550/arXiv.2305.15670

9

https://doi.org/10.48550/arXiv.2305.15670

