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 Abstract 
 As  early-onset  cancer  becomes  increasingly  common,  the  need  for  innovative  therapeutic 
 approaches  in  targeted  therapy  grows.  Generative  AI  has  emerged  as  a  powerful  tool  for  de 
 novo  drug  design,  offering  the  potential  to  create  targeted  therapies  against  challenging  cancer 
 driver  mutations.  These  mutations,  including  TP53  ,  KRAS  ,  and  EGFR  ,  often  confer 
 gain-of-function  effects  that  drive  cancer  progression  and  are  notoriously  difficult  to  target  due  to 
 their  unique  biochemical  properties.  This  review  summarizes  the  shift  from  conventional  drug 
 design  towards  newfound  generative  AI  models,  highlighting  their  ability  to  optimize  binding 
 affinity,  anticancer  properties,  and  generate  novel  molecules  against  previously  "undruggable" 
 targets.  This  review  explores  how  generative  AI  is  revolutionizing  the  fight  against  prevalent 
 cancer driver mutations, paving the way for personalized and effective cancer treatments. 

 Introduction 
 Cancer,  a  leading  cause  of  death  worldwide,  is  characterized  by  the  uncontrolled  growth  and 
 spread  of  mutated,  abnormal  cells.  1  Genetic  mutations  that  confer  growth  and  survival 
 advantages  to  these  transformed  cells  and  remain  central  to  disease  progression  are  known  as 
 cancer  “driver”  mutations.  2  Gain-of-function  (GOF)  drivers,  in  particular,  are  mutations  that  result 
 in  new  or  enhanced  functionality  of  the  resulting  protein.  3  Despite  their  known  significance  in 
 cancer  initiation  and  progression,  historically,  GOF  driver  mutations  have  been  challenging  to 
 target  therapeutically.  This  is  due  to  their  diverse  biochemical  properties  granting  high 
 resistance  to  conventional  treatments  and  latency  evading  immune  detection.  4  Fortunately,  the 
 advent  of  generative  artificial  intelligence  (genAI)  invites  new  possibilities  for  drug  discovery  with 
 the  potential  to  design  novel  molecules,  enabling  precise  and  effective  inhibition  of  GOF  mutant 
 activity. 

 The  current  methods  in  drug  design  make  the  research  and  development  process  laborious  and 
 ineffective,  with  FDA  approvals  being  granted  to  only  4%  of  preclinical  drugs.  5  Mass  expansions 
 of  online  data  make  it  clear  that  conventional  drug  design  methods  lack  the  means  to  overcome 
 complications  associated  with  targeting  GOF  driver  mutations.  Standard  methods,  such  as 
 ligand  based  drug  design,  fragment  based  drug  design,  and  structure  based  drug  design,  are 
 limited  to  existing  molecules  and  rely  on  inefficient  “trial  and  error”  to  manage  safety  and  toxicity 
 or  demonstrate  clinical  promise.  Given  its  recent  entrance  into  the  biopharmaceutical  space, 
 AI-derived  drugs  have  yet  to  reach  FDA  approval.  However,  in  today’s  technology-driven  age  of 
 information,  burgeoning  collaboration  amongst  scientists,  open  source  data,  and  expanding 
 repositories  of  physicochemical  and  biological  knowledge  invite  a  deeper  understanding  of  drug 
 design.  With  continual  growth  and  understanding  of  this  technology,  integration  of  generative  AI 
 is poised to improve and expedite cancer drug discovery.  6 

 This  review  focuses  on  three  of  the  most  prevalent  driver  mutations  in  cancer:  TP53  ,  KRAS  ,  and 
 EGFR  .  This  paper  covers  the  role  of  these  proteins  in  cancer  progression,  the  challenges 
 associated  with  targeting  them,  and  the  potential  of  generative  AI  to  overcome  these  challenges. 
 This  work  provides  an  overview  of  current  generative  AI  models  and  their  applications  in  drug 
 design,  highlighting  the  benefits  and  limitations  of  this  approach.  Finally,  this  review  explores 
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 future  directions  in  precision  medicine,  emphasizing  the  role  of  generative  AI  in  personalized 
 therapies for cancer. 

 Discussion 
 Understanding Cancer Driver Mutation  s 
 Compared  to  passenger  mutations  which  show  no  bearing  on  cancer  progression,  cancer  driver 
 mutations  can  be  classified  as  either  GOF  or  loss-of-function  (LOF)  mutations;  mutations  either 
 promote  cancer  growth  (oncogenes)  or  impede  anticancer  mechanisms  (tumor  suppressor 
 genes).  GOF  mutations  lead  to  excessive  or  aberrant  protein  activity,  often  granting  new 
 functions.  7  While  in  contrast,  LOF  mutations  typically  result  in  decreased  or  a  complete  loss  of 
 normal  function,  such  as  an  inability  to  regulate  the  cell  cycle  (Figure  1).  In  general,  it  is  simpler 
 to  turn  GOF  protein  activity  off  than  it  is  to  restore  original  LOF  protein  function;  this  is  because 
 restoration of function is difficult when target proteins are not even expressed. 

 Figure 1.  Visual of tumor growth and evolution as a result of driver mutations. Demonstrates 
 neutrality of passenger mutations. (Source: Mishra, J., 2024, BioRender) 

 The  most  frequently  mutated  drivers  in  human  cancers  include  KRAS  (25-30%,  majority  being 
 GOF),  EGFR  (6-7%  GOF  overall,  30%  in  non-small  cell  lung  cancer  [NSCLC]),  and  TP53 
 (50-60%  in  all  cancers,  30%  of  these  being  GOF).  8–11  Therapeutically,  GOF  mutations  are 
 generally  attacked  via  targeted  drug  inhibition,  with  the  goal  of  diminishing  or  deactivating  the 
 gained  oncogenic  function.  12  While  conceptually  straightforward,  these  mutations  present 
 significant  challenges  due  to  the  high  level  of  heterogeneity,  or  variation,  amongst  cancer  cells.  4 

 Even  within  a  single  protein,  like  KRAS  or  EGFR,  different  GOF  mutations  can  exhibit  distinct 
 behaviors;  mutated  DNA  sequences  result  in  altered  protein  folding  and  functions  including 
 varying  drug  binding  sites,  responses  to  tumor  microenvironment,  and  sensitivity  to  targeted 
 therapies.  For  example,  EGFR  exhibits  point  mutations  (EGFR  21),  deletions  (EGFR  19),  and 
 insertions  (exon  20)  —  the  exon  20  insertion  has  higher  drug  resistance,  making  it  difficult  to 
 develop  a  single  drug  that  effectively  targets  all  variants.  13,14  Despite  these  obstacles,  scientists 
 continue  to  explore  strategies  against  these  oncogenic  drivers,  developing  small  molecule 
 inhibitors  that  can  bind  to  the  mutated  active  or  allosteric  site(s).  The  goal  is  to  design  molecules 
 that  can  readily  penetrate  cellular  membranes  and  inhibit  the  oncogenic  activity  of  these 
 proteins. 

 KRAS: the “Undruggable” Mutation 
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 Kirsten  rat  sarcoma  virus  (KRAS)  is  the  most  frequently  mutated  oncogene  in  human  cancers. 
 In  healthy,  non-mutated  cells,  KRAS  plays  a  crucial  role  in  cell  signaling  pathways  that  promote 
 cell  growth  and  survival  in  response  to  growth  factors.  Mutations  in  KRAS  ,  particularly  those  that 
 lock  the  protein  in  an  active  state,  lead  to  uncontrolled  cell  proliferation  and  tumor  growth.  Many 
 cancers  resort  to  activating  the  KRAS  pathway  as  a  method  of  circumventing  certain  targeted 
 therapies.  15 

 KRAS  has  long  been  considered  an  "undruggable"  target  due  to  its  smooth  surface  and  lack  of 
 obvious  binding  pockets  for  drug  molecules.  The  clearest  binding  site  is  monopolized  by  GTP, 
 shifting  drug  developers’  focus  to  targeting  allosteric  sites.  16  Recent  advances  in  drug  discovery, 
 including  the  use  of  computational  modeling  and  fragment-based  drug  design,  have  led  to  the 
 development  of  several  promising  KRAS  inhibitors.  Small  molecule  inhibitors  such  as  sotorasib 
 and  adagrasib  have  shown  moderate  efficacy  in  clinical  trials,  reaching  response  rates  up  to 
 34%  and  32%,  respectively,  in  KRAS  G12C–mutated  NSCLC  tumors.  Thus,  such  treatments 
 have room to improve in terms of response rates and efficacy.  17,18 

 The  National  Cancer  Institute's  RAS  Initiative  continues  to  drive  research  efforts  to  develop 
 more  effective  and  selective  KRAS  inhibitors.  The  NCI’s  slow  progress  in  discovering 
 compounds  that  inhibit  KRAS  —  due  to  KRAS’  unique  shape  and  high  rate  of  resistance  to 
 therapy  —  demonstrates  the  drawbacks  of  current  drug  design  methods.  19  Despite  the 
 challenges,  targeting  KRAS  remains  a  high  priority  due  to  its  central  role  in  cancer  development 
 and its ability to drive resistance to other targeted therapies. 

 EGFR: an Optimistic Example 
 Epidermal  growth  factor  receptor  (EGFR)  is  a  receptor  tyrosine  kinase  that  plays  a  key  role  in 
 cell  growth  and  survival  by  activating  future  RAS,  RAF,  MEK,  and  MAPK  pathways.  Mutations  in 
 EGFR,  which  often  lead  to  constitutive  activation  of  the  receptor,  are  common  in  several 
 cancers, especially NSCLC.  20 

 Targeting  EGFR  with  tyrosine  kinase  inhibitors  (TKIs)  has  revolutionized  the  treatment  of 
 EGFR-mutant  lung  cancer.  First-line  treatments  like  osimertinib,  afatinib,  and  dacomitinib  have 
 significantly  improved  outcomes  for  patients  with  these  mutations.  However,  resistance  to  TKIs 
 often  develop,  highlighting  the  need  for  new  therapeutic  strategies.  Ongoing  efforts  to  develop 
 next-generation  TKIs  can  integrate  AI-driven  anti-cancer  drug  design  algorithms  which 
 accelerate  the  identification  and  optimization  of  EGFR  inhibitors.  For  instance,  gefitinib, 
 lapatinib,  and  erlotinib  were  designed  through  AI  models  to  inhibit  EGFR,  EGFR-mediated 
 signaling,  and  intracellular  phosphorylation,  respectively.  21  Offering  hope  for  more  effective  and 
 personalized  treatments,  advanced  generative  AI  can  target  rarer  EGFR  mutant  subtypes,  side 
 effects, acquired drug resistance, and unexplainable absence of response. 

 TP53: the Guardian of the Genome 
 The  TP53  gene,  often  referred  to  as  the  "guardian  of  the  genome,"  encodes  the  p53  protein,  a 
 master  regulator  of  the  cell  cycle  and  a  critical  tumor  suppressor.  P53  has  a  wide  array  of 
 functions,  including:  cell  cycle  arrest,  apoptosis,  and  regulation  of  metabolism,  immune  systems, 
 and  cellular  defense  mechanisms.  22  P53  halts  cell  division  in  response  to  DNA  damage, 
 allowing  for  repair.  P53  achieves  this  by  increasing  production  of  p21,  which  inhibits 
 cyclin-dependent  kinases  (CDKs)  responsible  for  cell  cycle  progression.  In  apoptosis,  p53 
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 triggers  programmed  cell  death  in  irreparably  damaged  cells,  increasing  the  expression  of  death 
 receptors, namely DR5. 

 Mutations  in  TP53  are  the  most  common  genetic  alteration  in  human  cancers,  occurring  in  over 
 50%  of  cases.  These  mutations  can  be  LOF  or  GOF,  with  approximately  30%  of  missense 
 mutations  resulting  in  GOF.  GOF  p53  mutations  not  only  lose  their  tumor-suppressive  abilities 
 but  can  also  acquire  new  oncogenic  functions,  promoting  cell  proliferation,  migration,  and 
 resistance to apoptosis and chemotherapy. 

 While  no  FDA-approved  drugs  directly  target  mutant  p53,  several  compounds  are  under 
 investigation.  COTI-2,  designed  to  inhibit  mutant  p53,  has  shown  promising  results  in  preclinical 
 studies.  APR-246,  a  drug  that  restores  wild-type  p53  function,  is  also  being  evaluated  in  clinical 
 trials.  11  However,  these  drugs  are  still  in  early  stages  of  development,  and  personalized 
 treatment  approaches  remain  challenging  due  to  the  wide  variety  of  TP53  mutations  and  their 
 diverse effects on cancer cells. 

 KRAS,  EGFR,  and  TP53  all  play  vital  roles  in  normal  cellular  processes,  hence  why  their 
 mutations  accelerate  cancer  cell  proliferation.  Most  driver  mutations  do  not  currently  have 
 approved  treatments,  and  conventional  drug  design  practices  are  inadequate  to  target  them. 
 Despite  properties  making  these  proteins  difficult  to  drug,  commotion  within  the  scientific 
 community  has  brought  generative  AI  to  the  forefront  of  drug  discovery.  Generative  AI  serves  as 
 a promising tool for designing cancer treatment, reducing time and cost. 

 Generative AI in Targeted Cancer Therapeutics 
 At  its  core,  artificial  intelligence  (AI)  is  a  technology-enabled  tool  that  allows  machines  to 
 perform  complex  tasks.  AI  is  being  continually  leveraged  across  industries  such  as  finance, 
 business,  engineering,  and  medicine,  leveraging  an  advantage  in  situations  where  humans  are 
 often  error-prone.  For  example,  in  medical  practices,  AI-enabled  tools  can  assist  healthcare 
 professionals  with  disease  diagnosis,  evaluate  patient  health  records,  and  predict  which 
 treatment  course  will  be  most  suitable  and  effective  for  a  given  case.  Machine  learning  (ML)  is  a 
 subcategory  of  AI  capturing  an  ability  for  computers  to  learn  and  think  like  humans.  ML  uses 
 data  to  make  predictions  by  either  reproducing  predetermined  patterns  (supervised  learning)  or 
 identifying  general  trends  within  datasets  on  its  own  (unsupervised  learning).  23  Unsupervised 
 learning  —  where  parameters  are  not  predetermined  or  labeled  beforehand  —  allows  computers 
 to  predict  outcomes  without  explicit  parameters  and  instructions  being  set.  A  more  specific 
 category  of  unsupervised  ML  is  deep  learning,  a  method  using  neural  networks  (Figure  2). 
 These  neural  networks  are  inspired  by  the  neurons  in  the  human  brain,  seeking  to  mimic  how 
 human neurons fire when thinking.  24 
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 Figure 2.  Hierarchy of AI and instances of each level seen in present-day medicine. (Created 
 with Canva) 

 Unique  compounds  for  cancer  patients  are  designed  with  generative  AI  models  or  generative 
 adversarial  networks  (GANs).  GANs  push  past  human  limitations  in  drug  discovery  by  designing 
 molecules  and  predicting  the  new  drug’s  characteristics.  The  AI  tool  comprises  two  neural 
 networks  that  toggle  back  and  forth  to  generate  and  improve  produced  compounds.  25  Each 
 generative  AI  model  has  a  different  goal  and  target  protein.  For  example  in  medicine,  the  goal 
 might  be  inhibition  of  a  specific  protein,  drug  repurposing,  or  polypharmacology. 
 Polypharmacological  drugs  simultaneously  bind  to  multiple  targets  whilst  reducing  resistance 
 buildup  and  improving  pharmacokinetics  such  as  movement,  absorption,  and  distribution 
 throughout  the  body.  This  section  discusses  the  current  generative  AI  models  being  utilized  in 
 cancer research. 

 Current Landscape of Generative AI in Cancer Research and Development 
 Generative  AI  specializes  in  five  main  aspects  of  anticancer  drug  design:  target  identification,  hit 
 identification,  de novo  drug design, drug repurposing, and drug reactions (Figure 3).  26 

 Figure 3.  Key aspects of AI in anticancer drug design. (Created with Canva) 

 With  cost  and  speed  being  the  greatest  challenges  in  modern  drug  design,  GANs  offer 
 specialized  drug  design  where  treatments  often  successfully  enter  phase  2/3  for  clinical  trials.  27 

 Generative  AI  has  two  main  purposes  in  drug  design:  discovering  de  novo  treatments  and 
 repurposing  existing  drugs,  both  of  which  aim  to  overcome  the  difficulty  in  targeting  and  treating 
 cancer  driver  mutations.  Established  above  are  several  intrinsic  properties,  such  as  flat  surfaces 
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 and  shallow  binding  sites,  that  make  TP53  ,  KRAS,  and  EGFR  challenging  to  target.  Instead  of 
 finding  drugs  serendipitously,  which  requires  years  of  follow-up  testing  and  validation, 
 generative AI enables decisions to improve safety and efficacy  a priori  (Figure 4). 

 Figure 4.  Traditional vs. generative AI drug design workflow. (Created with Biorender) 

 Target  and  hit  identification  relates  to  the  docking  and  binding  of  therapeutic  drugs  to  target 
 proteins,  and  generative  AI  systems  optimize  drugs  for  compatibility  of  binding  affinity  and 
 docking  accuracy  as  well  as  absorption,  distribution,  metabolism,  secretion,  and  toxicity 
 (ADMET).  For  instance,  one  of  the  most  widely  used  generative  AI  docking  simulations  is 
 Autodock  Vina  (used  in  POLYGON).  Autodock  Vina  and  other  AI  programs  overcome  3D 
 barriers  by  gathering  different  types  of  data  from  separate  sources  that  best  inform  models  to 
 predict  position  and  orientation  of  ligand  docking.  Models  are  trained  on  known  protein-ligand 
 interactions  and  2D  representations  of  drugs  and  targets.  Each  predicted  ligand  is  scored  based 
 on  binding  accuracy,  and  programs  are  consequently  reinforced.  These  scoring  functions  predict 
 binding affinity constants like IC50, Kd (dissociation constant), and Ki (inhibition constant). 

 Accuracy  of  ligand  docking  is  dependent  on  shape  complementary  and  compatibility  of  the 
 selective  inhibitors’  shape  (Figure  5).  For  GOF  driver  mutations  where  protein  function  changes, 
 it  is  difficult  to  predict  target  structures  that  lack  rigidity,  hence  why  generative  AI  can  be 
 leveraged  to  fine-tune  minute  details  in  compounds  that  are  key  for  increased  selectivity  and 
 binding  of  drugs.  Binding  of  ligands  also  relies  on   electrostatic  complementarity:  the  interactions 
 between  polar  groups,  charged  groups,  and  solvents.  28  Less  polar  molecules,  naturally,  have 
 more  targets,  putting  cancer  mutations  at  a  disadvantage  since  “undruggable”  mutations  have 
 shallow  pockets  which  have  undesirable  polarity.  29  KRAS  and  GOF  TP53  are  known  for  lacking 
 a  clear  active  site  target  and  deep  allosteric  sites  as  well.  30  Generative  AI  models  can  be  trained 
 to classify and predict narrower binding selectivity for more polar and charged groups. 
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 Figure 5.  Atomic resolution imaging of the fit of a ligand inside its corresponding binding pocket. 
 (Adapted from Cold Spring Harbor Laboratory, 2016) 

 Depending  on  the  target  driver  mutation,  GANs  have  different  parameters  to  optimize 
 physicochemical  properties  or  ADMET  properties.  While  optimizing  combinations  of 
 characteristics  is  still  elusive,  improved  AI  imaging  of  hydrogen  bonds  and  computer  analysis  of 
 boiling  points,  melting  points,  and  vapor  pressure  can  expand  the  capacity  of  generative  AI  to 
 consider multiple properties.  27 

 One  popular  AI  framework  for  unsupervised  learning  to  inform  biological  content  and  structure  is 
 known  as  a  variational  autoencoder  (VAE).  In  the  context  of  drug  design,  VAEs  are  most  useful 
 in  generating  novel  chemical  structures.  The  VAE  framework  translates  3D  biological  structures 
 into  a  computer-readable  format.  31  By  taking  in  molecules  and  mapping  them  in  their 
 corresponding  2D  chemical  representation,  protein  structures  are  made  biologically  interpretable 
 to computers, allowing computers to experiment with designing unique compounds  in silico  . 

 Once  researchers  construct  the  VAE  to  generate  a  feasible  compound,  computer  developers 
 train  the  GAN  to  optimize  these  outputs  by  the  means  of  reinforcement  learning  (RL).  RL  has 
 been  adopted  for  unsupervised  learning  and  is  iterative  —  desired  characteristics  are  rewarded 
 and  undesired  characteristics  are  discriminated  against.  32  GANs  can  generate  drugs  that  do  not 
 have  undesirable  properties,  components,  or  elements.  In  RL,  computers  designing  new 
 molecules  for  cancer  treatment  are  set  to  maximize  drug  likeness  or  desirability  of  certain 
 molecular  properties,  ligand  efficiency,  and  solubility.  33  This  enables  capture  of  desirable  targets 
 in  drugs  that  can  also  be  readily-formulated  in  a  lab.  For  drug  developers,  these  AI  tools  enable 
 multiple assessment integration, prioritizing crucial metrics such as ADMET properties. 

 One  of  the  most  widely-used  generative  AI  models  for  biologists  is  AlphaFold2  (AF2).  Cancer 
 researchers  have  been  utilizing  AF2  to  aid  novel  protein-based  therapeutic  design  in  cancers 
 such  as  liver  cancer.  34  Developed  in  2021  at  the  University  of  Toronto,  AF2  predicts  the  3D 
 shape  of  proteins  based  solely  on  amino  acids  from  an  input  DNA  sequence.  AF2  is  especially 
 useful  in  predicting  the  structure  of  unknown  proteins  and  chemically-complex  molecules. 
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 Specifically,  it  enables  the  identification  of  the  3D  molecular  structure  of  proteins  with  intrinsically 
 disordered  regions  or  regions  lacking  a  fixed  conformation,  which  are  notoriously  difficult  to 
 target  therapeutically.  35  The  ability  to  predict  the  shape  of  proteins  with  over  90%  accuracy, 
 understand  the  nature  of  protein  folding,  and  predict  unknown  target  structures  or  mutated 
 proteins  with  disrupted  function  significantly  aids  de  novo  drug  design.  Within  a  month,  cancer 
 researchers  using  AF2  to  scan  and  predict  structurally  vulnerable  targets  in  liver  cells  designed 
 and  synthesized  a  drug  for  use  against  CDK20  with  strong  correlation  to  liver  cancer 
 progression.  36 

 In  2024,  UC  San  Diego  developed  its  own  platform  called  POLYGON  (POLYpharmacology 
 Generative  Optimization  Network)  to  design  drugs  against  synthetically  lethal  targets  in  cancer: 
 MEK1  and  mTOR.  Synthetic  lethals  are  proteins  in  which  inhibition  of  both,  as  opposed  to  one 
 or  the  other,  results  in  cancer  cell  death.  37  The  attention  surrounding  POLYGON  is  due  to  the 
 promise  of  polypharmacology  reducing  side  effects  that  are  associated  with  current  combination 
 therapy;  combination  therapy  is  the  mixing  of  five  or  more  drugs  for  a  patient  at  one  time, 
 increasing  risk  of  toxicity  and  unpredictable  drug-drug  interactions.  Until  recently,  companies 
 targeted  a  single  cancer  biomarker  and  found  therapeutic  compounds  exclusively  through 
 serendipity,  however  generative  AI  is  a  new  outlet  for  more  systematic  discovery  of  drugs  with 
 pharmacological  promise.  POLYGON,  at  the  time  of  publication,  reported  an  accuracy  of  81.9% 
 in  dual  activity  prediction  for  generated  molecules.  Out  of  hundreds  of  newly  synthesized 
 molecules,  POLYGON  predicted  the  top  32  that  would  best  inhibit  MEK1  and  mTOR,  reducing 
 phosphorylation  by  over  50%  and  testing  off-target  inhibition  to  ensure  safety.  POLYGON  falls 
 short  in  optimization  of  ADMET  properties,  though.  There  is  also  room  for  improvement  in 
 selectivity  of  targets  and  minimization  of  side  effects.  Despite  the  potential  of  generative  AI  in 
 drug  design,  humans  are  still  necessary  in  following  clinical  trials  to  test  the  safety  and  efficacy 
 of the treatment.  38 

 Even  more  recently  in  2024,  Zapata  AI  came  out  with  quantum  enhanced  generative  AI  models 
 to  design  a  KRAS  inhibitor  in  silico.  Zapata  AI  has  revolutionized  generative  AI  by  using 
 quantum  inspired  ML  strategies  on  classical  computers  to  model  how  quantum  computers 
 function.  5  Quantum  mechanics  are  especially  proficient  in  performing  enhanced  ML  capabilities 
 too  complex  for  current  AI  to  solve.  This  can  include  formulating  drugs  with  more  desirable 
 properties,  evaluating  complex  internal  and  external  conditions,  and  high  resolution  imaging  of 
 3D  structures  which  can  take  months  for  classical  computers.  Zapata  AI  synthesized  15 
 molecules,  two  of  which  were  novel  compounds  and  demonstrated  significantly  higher  binding 
 affinity  to  KRAS.  39  This  promising  outcome  paves  the  way  for  discovering  more  molecules  with 
 enhanced  binding  to  difficult  to  drug  targets  like  driver  mutations.  Because  quantum  technology 
 is  still  relatively  unexplored,  there  is  still  a  challenge  in  creating  highly  successful  molecules  with 
 GAN models like Zapata AI’s. 

 Additional Use Cases for Generative AI in Cancer 
 High  quality  imaging  of  tumor  microenvironments  (TME)  can  also  be  accomplished  by  GANs  to 
 optimize  affinity  between  ligands  and  targets.  This  optimization  is  complex,  though  —  TMEs 
 vary  per  cell  due  to  unique  interactions  with  nearby  cells  and  proteins.  40  Affinity  is  determined  by 
 chemical  structures  of  molecules  which  GANs  can  quickly  learn  through  collection  of  thorough 
 data.  Generative  AI  models  then  assess  which  chemical  attributes  are  most  useful  to  maximize 
 binding affinity. 
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 Drug  repurposing  is  another  avenue  that  researchers  are  incorporating  generative  AI  into  to  find 
 new  therapeutic  uses  for  pre-existing  drugs.  Approval  of  repurposed  drugs  is  much  more 
 efficient  since  drugs  may  automatically  progress  to  phase  2  of  clinical  trials.  Creativity  to 
 discover  new  purposes  for  pre-existing  drugs  is  inhibited  due  to  predetermined  cancers  these 
 treatments  are  first  approved  for.  However,  GANs  have  the  capacity  to  evaluate  whether  drugs 
 can  be  repurposed  for  a  different  target.  Utilizing  known  drug-target  interactions  and  chemical 
 structures,  GANs  recognize  that  similar  drugs  are  associated  with  similar  disease  profiles, 
 leveraging  established  biological  knowledge  to  be  specific  to  each  patients’  DNA  sequence  or 
 mutation. 

 Generative  AI  models  including  AF2,  POLYGON,  and  Zapata  AI  each  have  their  own  goals  and 
 targets,  creating  drugs  that  cater  to  a  specific  cancer  protein.  Difficult  to  drug  proteins  like 
 KRAS,  EGFR,  and  TP53  all  have  intrinsic  properties  that  make  them  unfit  for  ligand  binding,  but 
 generative  AI  has  the  means  to  overcome  these  properties  and  design  novel  molecules  with  the 
 highest  binding  affinity  and  predicted  docking  accuracy.  De  novo  drug  design  takes  advantage 
 of  generative  AI’s  ability  to  create  novel  molecules  with  favorable  traits  such  as  absorption  or 
 metabolism.  Further  exploration  of  biological  AI  can  greatly  aid  anticancer  drug  development, 
 advancing precision medicine to contain and treat cancer for every patient’s unique case. 

 Challenges and Limitations 
 Generative  AI  models  must  be  trained  before  they  can  generate  valuable  outputs.  This  training 
 informs  AI  about  existing  drug-protein  interactions  from  which  the  AI  learns  patterns  and 
 generates  novel  cancer  drugs.  The  data  that  is  used  to  educate  generative  AI  must  be  diverse, 
 though,  posing  the  challenge  of  obtaining  high  quality  data.  In  theory,  high-quality, 
 comprehensive  training  data  will  provide  accurate  chemical  structures,  mutated  DNA 
 sequences,  and  solid  imaging  of  protein  structure.  The  reality,  however,  is  that  human 
 specimens  serving  as  the  source  of  this  data  can  oftentimes  be  messy  and  incomplete,  making 
 it  difficult  to  define  and  discern  what  might  be  considered  “good”  data  from  poor-quality, 
 non-informative,  “bad”  data.  A  cost  effective  and  user-friendly  solution  to  overcoming  such 
 limitations  is  open  source  databases  specific  for  anticancer  therapeutics  such  as  chEMBL  and 
 the  Protein  Structure  Database.  Routine  maintenance  and  updates  of  databases  must  be 
 consistent,  though,  otherwise  data  can  unexplainably  degrade,  causing  predictions  to  drift  or 
 biases  to  occur.  The  scientific  research  community  is  poised  to  have  a  high  quantity  of  training 
 data  to  help  further  refine  these  models,  however,  emphasis  on  accurate  recording  and 
 reproducibility are evermore important as open sourcing may invite data that is not adequate. 

 Another  limitation  is  the  “black  box”  concept  in  AI,  relating  to  the  lack  of  reasoning  behind  how 
 AI  predicts  outcomes.  Since  humans  can  not  interpret  the  underlying  biological  mechanisms  of 
 AI,  generated  outcomes  lack  reliability.  41  Explainable  AI  exists  to  ethically  explain  predictions 
 (prediction  accuracy)  and  educate  humans  on  how  AI  makes  decisions  (decision 
 understanding).  42  Explainable  AI  models  like  LIME  test  and  understand  why  computers  give 
 certain  outputs  and  explain  it  to  users.  43  Clinical  adoption  and  usage  of  generative  AI  tools  is 
 enhanced when humans trust the expertise and logic behind AI. 

 Mode  collapse  is  another  challenge  in  generative  AI  models  where  produced  outputs  become 
 limited  in  variety.  Lack  of  diversity  in  datasets  constrains  the  diversity  of  outputs,  resulting  in 
 inadequate  compounds  for  binding  responses  and  effective  treatment.  What  mode  collapse 
 looks  like  is  ambiguous,  making  it  especially  troublesome  to  identify  and  deal  with.  To 
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 reintroduce  variation  in  generated  outcomes,  GANs  can  be  altered  to  disfavor  molecules  that 
 are too similar to previously curated molecules, promoting variety again. 

 Future Directions and Conclusion 
 While  this  review  highlights  the  application  of  genAI  drug  design  against  GOF  driver  mutations, 
 other  cancer-associated  mutations,  such  as  LOF  driver  and  passenger  mutations,  present  an 
 additional  opportunity  for  genAI-enabled  drug  development.  For  select  driver  mutations  such  as 
 TP53  ,  proteins  can  exhibit  both  LOF  and  GOF.  Integration  of  CRISPR  technology  to  correct 
 altered  DNA  sequences  and  generative  AI  to  design  de  novo  drugs  facilitates  repair  of  LOF 
 driver  mutations.  27  Fixing  LOF  mutations  subsequently  turns  tumor  suppressor  genes  back  “on,” 
 resuming  regulation  of  the  cell  cycle  to  check  cancer.  There  are  few  treatments  currently  under 
 clinical  trials  that  correct  mutated  proteins,  and  generative  AI  would  immensely  improve  drug 
 design and success of such restoration treatment. 

 Passenger  mutations,  “neutral”  genetic  mutations  which  on  their  own  do  not  contribute  to 
 carcinogenesis,  make  up  97%  of  mutations  in  the  human  body.  Yet  a  key  barrier  to  effective 
 treatment,  and  one  attributed  heavily  to  passenger  mutations,  is  intratumoral  heterogeneity.  This 
 is  a  phenomenon  where  different  cancer  cells  within  the  same  tumor  may  not  respond  similarly 
 to  a  particular  therapy.  Indeed,  recent  studies  found  that  passenger  mutations  may  contribute  to 
 cancer  evolution  and  drug  resistance.  4,44  These  mutations  increase  cancer  cells’  fitness  by 
 promoting  a  pro-tumor  environment  for  cancer  to  evolve  and  persist.  Using  generative  AI  to 
 target  driver  mutations  to  slow  cancer  progression  and  target  passenger  mutations  to  prevent 
 and  slow  cancer  resistance  provides  increasingly  efficacious  personalized  treatment.  Future 
 investigation  of  LOF  and  passenger  mutation  targeting  through  GANs  is  another  promising 
 outlet to combat cancers. 

 The  excitement  surrounding  AI-enabled  tools  remains  evident  in  the  biopharmaceutical  industry, 
 with  investors  writing  large  checks  for  AI-driven  biotechnology  companies.  These  companies 
 aim  to  produce  less  expensive  medicine  through  fusion  of  AI,  data  generation,  and  drug  design. 
 These  startups  enable  AI  to  optimize  daily  work,  predict  toxicity  and  drug  efficacy,  and  generate 
 new  ML  models.  Billions  of  dollars  of  funding  are  now  being  funneled  into  companies  harnessing 
 cutting-edge  AI  technology  for  their  drug  discovery  process,  such  as  Xaira  Therapeutics  and 
 Formation  Bio.  45,46  The  backlog  of  current  treatments  is  due  to  how  expensive  drug  development 
 is,  and  biotech  companies  close  this  gap  between  candidate  drugs  and  FDA  approval  through 
 increased appliance of AI. 

 Strong  momentum  from  academics  to  develop  AI  mediated  tools  in  healthcare  presents 
 generative  AI  as  a  powerful  tool  in  drug  design,  particularly  for  targeting  "undruggable"  driver 
 mutations  in  cancer.  Despite  challenges  of  data  limitations  and  interpretability,  AI's  ability  to 
 process  vast  datasets  and  uncover  hidden  patterns  makes  it  invaluable  for  drug  discovery. 
 Future  research  should  focus  on  addressing  these  challenges,  expanding  AI  applications  to  LOF 
 and  passenger  mutations,  and  developing  patient-specific  models  for  personalized  treatment. 
 The  growing  investment  in  AI-driven  biotech  startups  further  underscores  its  potential  to 
 revolutionize  cancer  therapy.  As  AI  continues  to  advance,  we  can  anticipate  a  future  where 
 effective treatments for even the most challenging cancers become a reality. 
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