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Abstract
This study aims to develop a machine-learning model for the automated identification of plant
diseases using leaf images. The analysis uses the PlantVillage dataset and utilizes a multi-layer
perceptron (MLP) neural network to classify images from the PlantVillage dataset containing
various plant species and diseases. Performance was evaluated using accuracy, F1 score, and
confusion matrices. The model achieved an accuracy of 88.06% in distinguishing between
healthy and diseased plants when optimized with the appropriate hyperparameters. These
results highlight the potential of neural networks as tools for disease detection in agriculture,
offering a scalable and reliable solution that can significantly enhance crop management
practices. Future work could explore incorporating additional diverse datasets and advanced
neural network models to further improve model functionality and generalization.
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Introduction

Agriculture is one of the most essential components of the global economy. Still, it faces
persistent challenges due to plant diseases, which can significantly reduce crop yields and
threaten food stability. Traditional diagnostic methods depend on expert manual inspection,
which is time-consuming and prone to error, making them unsustainable as global agricultural
demands rise [1]. Recent research has shown promise in using machine learning models for
disease detection, though challenges in model generalization persist. This study aims to
contribute by developing and evaluating a multi-layer perceptron (MLP) neural network model
for classifying plant diseases using images from the PlantVillage dataset. The value of this
research lies in providing a more straightforward yet effective solution for automated disease
detection that can potentially be integrated into scalable diagnostic tools, enhancing crop
management and food security.

Background

Machine learning has seen widespread application across various fields, including agriculture,
where its potential for automating disease detection has been extensively explored. [2]
Numerous studies have utilized algorithms like convolutional neural networks (CNNs) and
support vector machines (SVMs) to classify plant diseases with promising outcomes. [2]
However, machine learning's broader use in agriculture extends beyond disease identification to
include areas such as yield prediction, soil health monitoring, and crop management. While the
current study focuses specifically on plant disease detection using a multi-layer perceptron
(MLP) model, it contributes to the existing body of research by demonstrating the effectiveness
of simpler neural network architectures for this task. Unlike more complex models, the MLP's
performance with the PlantVillage dataset provides insights into how less computationally
intensive models can still achieve competitive results. Although this study does not directly
address the limitations identified in other works, such as model generalization or application to
diverse agricultural tasks, it serves as a step towards understanding how different machine
learning models can be leveraged for specific agricultural applications.

Methodology

Data Collection & Preprocessing

The first step in this study involved finding a dataset on Kaggle — The PlantVillage dataset [6] —
which contains images of various plant species and whether they were healthy or infected. The
dataset contained around 20000 images total, including 3 different plant species and 10 unique
diseases categories. For example, the pepper bell section comprises 2475 images, of which
997 are diseased and 1478 are healthy; the potato section contains 2152 images, with 2000
being diseased and 152 being healthy. The dataset was then preprocessed by resizing images
to 128x128 pixels, normalizing pixel values to a range of [0, 1], and organizing them into
respective classes. An 80/20 train-test split was applied to evaluate the model's performance.
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Model Training

The primary model used in this study was a multi-layer Perceptron (MLP) neural network, which
was implemented using Scikit-learn's MLPClassifier. The model's structure consisted of an input
layer, multiple hidden layers, and an output layer. The hidden layers were configured to contain
varying neurons, with the optimal configuration determined through hyperparameter tuning.

Hyperparameter Tuning

The model's performance was optimized by adjusting key hyperparameters, including the
learning rate and the size of the hidden layers. The function was used to systematically test
different configurations of these hyperparameters. The best-performing model was selected
based on the lowest loss value achieved during training.
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Figure 1. Loss Curve for Different Hidden Layer Sizes
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Loss Curve for Different learning_rate_init
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Figure 2. Loss Curve for Different Learning Rates

Training Process

The training process for the Multi-layer Perceptron (MLP) neural network involved configuring
the model with an input layer, multiple hidden layers, and an output layer using Scikit-learn's
MLPClassifier. To optimize performance, key hyperparameters such as the number of hidden
layers, neurons, and learning rate were fine-tuned through grid search. The model was trained
using the backpropagation algorithm with categorical cross-entropy [3] as the loss function and
the Adam optimizer [4] for efficient weight updates. Training was conducted over 1000 epochs,
utilizing the early stopping [7] method to prevent overfitting. The process included techniques
like dropout regularization and batch normalization to improve model robustness and stability.

Model Evaluation
The model's performance was evaluated using several metrics to ensure a comprehensive
assessment:
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Accuracy
The model's accuracy was calculated using the function from Scikit-learn, which measures the
proportion of correctly classified images out of the total number of images. The best MLP

classifier configuration achieved an accuracy of 88.06%, demonstrating the effectiveness of this
approach for plant disease identification.

Confusion Matrix

A confusion matrix was generated for both the training and testing datasets to visualize the
model's performance across different classes. The confusion matrix provided insights into the
types of errors made by the model, such as false positives and negatives. The
ConfusionMatrixDisplay function from Scikit-learn was used to generate and display these
matrices. The two figures below show the confusion matrices for the most optimal
hyperparameters used together for testing.
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Figure 3. Confusion Matrix for the Testing Portion of Dataset with Best Learning Rate
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Figure 4. Confusion Matrix for the Testing Portion of Dataset with Best Hidden Layer Sizes

Loss Curves

To visualize the model's learning process, the loss curves were plotted for different
configurations of hyperparameters. The curves provided insights into how quickly the model
converged and whether it was prone to overfitting. These plots were generated using Matplotlib.
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Figure 5. Plot of Best Loss for Different Hidden Layer Sizes
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Figure 6. Plot of Best Loss for Different Learning Rates

Deep Learning Model Comparison

In addition to the MLP classifier, a deep learning model using the "zero-shot image
classification" pipeline from Hugging Face's Transformers library was utilized. This model, based
on the CLIP (Contrastive Language-Image Pretraining) architecture, was used to classify the
same set of images for comparison purposes.

Performance Evaluation

The deep learning model, based on CLIP architecture, achieved an accuracy of 77.32%, which,
while significant, was lower than the MLP classifier's 88.06%. Both models utilize fully
connected layers, but CLIP incorporates additional layers like transformers, making it more
versatile for complex tasks. Despite its advanced architecture, the MLP's higher accuracy in this
specific task highlights that, for well-structured datasets like PlantVillage, simpler models can
sometimes outperform more complex ones, depending on the particular problem and dataset
used.

Discussion

The findings of this study highlight the potential of using Multi-layer Perceptron (MLP) neural
networks for the automated classification of plant diseases. The model achieved a high
accuracy of 88.06%, demonstrating its effectiveness in distinguishing between healthy and
diseased plants. This performance is particularly notable given that MLPs, while less complex
than convolutional neural networks (CNNs), can still achieve competitive results when properly
tuned and trained with high-quality data.
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A key aspect of the model’s success lies in its optimization through hyperparameter tuning.
Adjusting the size of hidden layers and the learning rate played a crucial role in achieving the
optimal configuration. Despite these strengths, there are some limitations that need to be
addressed. The model's performance is highly dependent on the quality and diversity of the
dataset. The PlantVillage dataset, while comprehensive, may not encompass the full spectrum
of plant diseases and environmental conditions found in real-world agricultural settings. This
limits the model's generalizability to new, unseen data and different crop species.

In comparison to more complex architectures, such as convolutional neural networks (CNNs) or
deep learning models like CLIP (Contrastive Language-Image Pretraining), the MLP showed
competitive accuracy. However, the results from the zero-shot image classification pipeline,
which yielded an accuracy of 77.32%, suggest that more sophisticated models may not always
outperform simpler ones in every context. The relatively high accuracy of the MLP model can be
attributed to its suitability for the structured, well-labeled PlantVillage dataset. This raises an
important consideration for future research: the choice of model architecture should be guided
by the specific characteristics of the dataset and the practical constraints of the application
domain.

The implications of this research for the agricultural sector are significant. The deployment of
such models can provide a scalable, cost-effective solution for early disease detection, which is
crucial for minimizing crop loss and ensuring food security. However, practical implementation
would require integrating the model into a user-friendly diagnostic tool, possibly coupled with
mobile applications for field use. Additionally, the model would need to be trained on more
diverse datasets, including images from various geographical locations and environmental
conditions, to enhance its robustness and adaptability.

Future work should focus on addressing these limitations by expanding the dataset and
experimenting with hybrid models that combine the strengths of MLPs and other architectures
like CNNs or transformers. Incorporating additional features, such as environmental data (e.g.,
temperature, humidity), could also improve the model's predictive power. Moreover, exploring
techniques like transfer learning and domain adaptation could help enhance the model's
generalization to different crops and diseases.

Conclusion

This research has demonstrated the effectiveness of Multi-layer Perceptron (MLP) neural
networks in the automated identification of plant diseases, achieving an accuracy of 88.06% on
the PlantVillage dataset. The results underscore the potential of using machine learning models
as scalable and reliable diagnostic tools in agriculture. By automating disease detection, such
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models can significantly improve crop management practices, ultimately contributing to
increased agricultural productivity and food security.

While the model provides a promising approach, it is not without its limitations. The dependency
on a specific dataset constrains its applicability to broader agricultural contexts. To overcome
this, future studies should focus on enhancing the model's generalization capabilities by
incorporating more diverse datasets and exploring advanced neural network architectures.
Additionally, practical considerations, such as integrating the model into accessible tools for
farmers, are crucial for real-world adoption.

In conclusion, the MLP model represents a significant step forward in leveraging machine
learning for agricultural diagnostics. However, continued research and development are
essential to refine these models, expand dataset availability, and improve their robustness and
accuracy. With ongoing advancements, such technologies have the potential to transform the
way plant diseases are detected and managed, allowing for more sustainable and flexible
agricultural practices.
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Appendix

GitHub Code:
h //aithub.com/danielpan01/PlantDi MLCI ifier
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