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Abstract 

This paper presents a novel simulation framework aimed at optimizing jet-engine geometries for 
enhanced aerodynamic performance. The framework integrates Mathematica for geometry 
creation and parameterization with OpenFOAM, a Computational Fluid Dynamics (CFD) 
software, for the simulation and analysis of jet-engine flows. Using pimpleFOAM, a transient 
solver for compressible flow, the framework automates the optimization process by adjusting 
engine geometry parameters iteratively. The combination of Mathematica’s powerful modeling 
capabilities and OpenFOAM’s high-fidelity simulation tools provides an efficient platform for 
optimizing jet-engine components such as nozzles and blades. Optimization results 
demonstrate significant improvements in performance, including increased thrust-to-weight 
ratios and improved pressure recovery. 

 

Introduction 

The design and optimization of jet-engine geometries have been central to the development of 
high-performance aerospace systems. Traditional methods for optimization involve manual 
iterations of geometry modification, CFD simulations, and performance evaluation, a process 
that is time-consuming and computationally expensive. This paper proposes a framework that 
automates geometry creation, CFD simulation, and optimization using Mathematica and 
OpenFOAM. The goal is to minimize the computational effort while improving aerodynamic 
performance, leveraging the strengths of both software packages [6]. 

Mathematica is used to parametrize jet-engine geometries and control design variables, while 
OpenFOAM handles the CFD simulation of flow dynamics around the engine components. 
Through an iterative optimization process, the framework refines geometry to maximize 
performance metrics such as thrust, efficiency, and pressure recovery. 

The primary contributions of this work include developing an efficient approach to optimize jet 
engine geometries using the best-suited tools. It addresses the challenges of mesh compatibility 
between Mathematica-generated geometries and OpenFOAM’s meshing utilities, which is 
essential for creating a seamless workflow [1], [7]. Additionally, we propose a semi-automated 
pipeline for geometry creation, mesh refinement, and simulation, significantly reducing manual 
intervention and enhancing efficiency. The study applies genetic algorithms to explore the 
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design space of key jet engine features, such as blade dimensions and count, identifying 
configurations that enhance thrust production. By employing both transient and steady-state 
simulations, this paper captures dynamic flow phenomena and provides valuable insights into 
how design changes affect engine performance [8]. Furthermore, we demonstrate the scalability 
of the framework through the integration of OpenFOAM’s parallel computing capabilities, making 
it feasible to perform large-scale aerodynamic optimization tasks [9]. 

The paper is organized into separate sections to structure our research approach and findings. 
The Problem Statement section offers an overview of the problem domain, motivation for 
integrating Mathematica and OpenFOAM, and the objectives of the study. In the Methodology 
section, we detail the process of geometry creation, mesh refinement, solver configuration, and 
the optimization strategy used in this study. The Simulation Setup section describes the 
computational domain, solver settings, and mesh considerations, emphasizing the importance of 
both steady-state and transient simulations. The Results and Discussion section presents and 
analyzes the simulation results, illustrating the effects of various design changes and 
optimization efforts on jet engine performance. Finally, the Conclusion and Future Work section 
summarizes the key findings, contributions, and potential directions for future research, 
providing a broader context for the application of the proposed framework in the field of jet 
engine design optimization [10]. 

 

Problem Statement 

Optimizing jet engine geometries is a cornerstone of aerospace innovation, directly influencing 
performance, efficiency, and emissions. The current approach to this problem typically involves 
a fragmented pipeline: CAD tools are used to create the geometry, specialized mesh generators 
prepare the computational domain, and CFD solvers like OpenFOAM are employed to analyze 
the flow dynamics. While effective, this approach is fraught with challenges: 

1. Fragmented Workflow: The use of multiple tools for geometry creation, mesh 
generation, and simulation often leads to inefficiencies and data compatibility issues. 

2. Limited Parametric Control: Many CAD tools lack the flexibility to easily modify complex 
geometries using parametric equations, slowing down the iterative design process. 

3. Manual Interventions: Transferring data between tools often requires manual 
adjustments, increasing the potential for errors and elongating the design-simulation 
cycle. 

4. Optimization Bottlenecks: The process of exploring design variations and assessing 
their performance remains resource-intensive and time-consuming. 
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To address these challenges, we propose an integrated framework that uses Mathematica for 
geometry creation and OpenFOAM for CFD analysis. This approach unifies design and 
simulation into a cohesive pipeline, allowing for rapid iterations and precise optimizations. 

Through this approach we seek to optimize peak engine thrust and examine its impact on fuel 
efficiency to improve overall engine performance. 

Key Advantages of the Proposed Method: 

● Seamless Integration: Mathematica’s symbolic and parametric capabilities enable 
precise control over complex geometries, while its ability to directly export 
simulation-ready meshes ensures compatibility with OpenFOAM. 

● Efficiency in Iteration: By combining design and simulation, the framework eliminates 
redundancies and reduces the time required for geometry modifications and performance 
assessments. 

● Enhanced Optimization: The use of parametric equations allows for systematic 
exploration of design spaces, enabling designers to quickly identify optimal 
configurations. 

● Streamlined Workflow: Automation of key steps in the process minimizes manual 
interventions, reduces errors, and enhances reproducibility. 

By bridging the gap between design and simulation, this framework aims to provide an 
alternative to  how jet engine geometries are developed, offering a faster, more reliable, and 
highly iterative approach to optimization. This integration serves as a step forward in the quest 
for more efficient and sustainable aerospace systems. 

Methodology 

To effectively create the jet engine geometry, we need a solution which supports the following 
key functionalities:  

1. Parametric Equation Handling to enable precise design of complex geometries using 
parametric equations, which are critical for streamlined and efficient components. 

2. 3D Mesh Generation allows the conversion of designs into computational meshes for 
CFD simulations, balancing accuracy, resolution, and fidelity. 

3. Geometric Transformations which facilitate scaling, rotation, extrusion, and assembly of 
designs like blades or propellers. 

4. Iterative Design allows rapid iteration by varying parameters such as blade pitch or 
curvature for optimization studies [14]. 

We chose Mathematica to create the jet engine geometry because:  
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1. Symbolic and Numerical Power which provides precise handling of parametric 
equations and geometric transformations. 

2. Visualization with real-time 3D previews which simplify iterative design processes. 
3. Automation with flexible scripting for parameter studies and geometry workflows. 
4. Mesh Creation with tools generate simulation-ready meshes for further refinement. 
5. Interoperability which supports export to formats compatible with other standard 

simulation tools. 

 

We integrate the geometry created by Mathematica into the simulation capabilities provided by 
OpenFOAM to iteratively design and optimize parameters critical for jet engine performance. A 
summary of the approach adopted by us is illustrated in Figure 1. 

 

Figure 1: Methodology Overview 
 

3.1 Geometry Creation in Mathematica 

The geometry of the jet-engine components consists of key features, such as: 

● Blade Width: Determines the aerodynamic profile and affects airflow distribution across 
the blade surface. Wider blades may provide higher thrust but could result in increased 
drag. 

● Blade Depth: Refers to the thickness of the blade, which influences structural integrity 
and resistance to deformation under high stresses. 

● Blade Length: The span of the blade along its axis. Longer blades can enhance thrust 
by increasing the interaction area with airflow, but they may also introduce challenges in 
material strength and vibration control. 

● Blade Count: The number of blades in the configuration. Higher blade counts can 
improve thrust uniformity and reduce vibration but may increase manufacturing 
complexity and weight. 
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Mathematica’s ability to handle parametric equations and generate 3D meshes provides a 
strong foundation for geometry creation. The geometry is exported to STL format for 
compatibility with OpenFOAM’s meshing utilities. 

 

Figure 2: Mathematica-generated parametric geometry of jet-engine components. 
 

3.2 Meshing with OpenFOAM 

In any computational fluid dynamics (CFD) simulation, the ability to create a high-quality mesh is 
fundamental to obtaining accurate results [4]. The mesh defines how the simulation domain is 
discretized, and the quality of the mesh directly impacts the precision of the computed flow 
solutions. For jet engine simulations, where the flow is highly complex and dynamic, it is 
essential to capture intricate flow features such as turbulence, shock waves, and boundary layer 
effects, which occur in areas like the blade tips and nozzle exit [2]. 

OpenFOAM is a widely used, open-source CFD software that excels in handling complex 
simulations involving turbulent, compressible flows [3]. Its flexibility, extensive solver libraries, 
and robust meshing utilities make it ideal for simulating engine components [4]. OpenFOAM's 
strength lies in its ability to handle large-scale simulations across a wide variety of flow types, 
from steady-state to transient conditions, making it highly suitable for optimizing jet engine 
geometries [5]. 

Once the geometry is generated in Mathematica, the next step is meshing it for simulation in 
OpenFOAM [15]. OpenFOAM’s snappyHexMesh utility is used to create a high-quality mesh 
around the engine components [4]. Special attention is given to regions of high-gradient flow, 
such as the blade tips and nozzle exit, to ensure accurate resolution in these critical areas [3]. 
At the blade tips, phenomena like vortex shedding and flow separation occur, significantly 
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affecting energy losses, noise, and structural integrity [6]. Refining the mesh in this region 
captures these effects with greater precision, enabling accurate calculation of aerodynamic 
forces [5]. 

Similarly, the nozzle exit experiences steep velocity and pressure gradients as the flow 
accelerates to generate thrust [9]. High-resolution meshing in this area ensures precise 
modeling of thrust generation and downstream flow behavior [10]. Focusing on these critical 
regions enhances the accuracy of performance metrics, such as thrust and efficiency, while 
identifying and mitigating design inefficiencies [11]. 

Key meshing considerations include: 

● Mesh Refinement: Refining the mesh in the boundary layer is essential for accurately 
capturing aerodynamic effects near solid surfaces. Proper resolution in this region 
ensures the precise calculation of shear stresses and flow behavior critical to 
performance evaluation. 

● Mesh Quality: High-quality meshes are crucial for stable and reliable simulations. 
Parameters such as orthogonality and skewness are carefully monitored and optimized to 
ensure the mesh is well-suited for computational fluid dynamics (CFD) analysis. 

● Mesh Scaling: The mesh is scaled down by a factor of 100 to reduce the simulation 
domain size. This approach improves computational efficiency, enabling faster 
simulations while maintaining the integrity of relative performance metrics, including 
thrust calculations. 

3.3 Simulation with OpenFOAM 

The simulation aims to determine the optimal values for key geometrical features of the jet 
engine, such as blade width, depth, length, height, and blade count, to maximize thrust and 
efficiency. To achieve this, the solver must accurately capture the dynamic behavior of 
high-speed, compressible flows within the engine. This includes steady-state simulations, which 
represent the flow behavior under constant conditions, and transient simulations, which account 
for time-dependent phenomena like turbulence and shock waves. Both are essential for 
understanding and optimizing the flow characteristics under real-world operating conditions [2]. 

OpenFOAM provides the necessary tools to handle these requirements effectively. Its 
pimpleFOAM solver, specifically designed for transient compressible flows, was chosen for its 
ability to manage variable Mach number regimes and turbulent flow fields. This solver can 
handle both steady-state and transient simulations, making it ideal for capturing the complex 
and dynamic aspects of jet engine flow [4]. 

For this setup, the simulation domain is scaled to a manageable size to accelerate 
computations, with the mesh refined in critical regions such as the blade tips and nozzle exit to 

6 



capture high-gradient flow phenomena. The solver settings include carefully tuned time step 
sizes and relaxation factors to ensure convergence and accuracy, enabling the identification of 
the optimal geometrical configurations for performance improvements [5]. 

The simulation setup includes: 

● Initial and Boundary Conditions: Inlet velocity, outlet pressure, and wall boundary 
conditions are defined based on typical operating conditions of a jet engine. 

● Turbulence Model: The k-epsilon turbulence model is employed to capture the turbulent 
flow characteristics within the engine. 

● Time Stepping: Transient simulations are run with appropriate time step sizes to ensure 
accurate resolution of the flow dynamics. 

The OpenFOAM configuration is adjusted to optimize the simulation for speed and accuracy, 
ensuring that the results are reliable and converge in a reasonable timeframe. 

Parameter Value Utility Rationale for Choice 

application pimpleFoam Specifies the solver 
to be used for 
simulation. 

Chosen for its ability to 
handle transient, 
compressible flows in 
turbulent regimes, 
suitable for jet 
engines. 

startTime 0 The time at which 
the simulation starts. 

Starts from the initial 
condition for the 
simulation. 

endTime 0.1 The final time for the 
simulation run. 

Captures relevant 
transient behavior 
while balancing 
computational cost. 

deltaT 1.00E-05 Time step size for 
the simulation. 

Ensures stability and 
accurate resolution of 
transient effects. 

writeControl adjustableRunTi
me 

Determines when 
simulation data is 
written. 

Writes data at 
adjustable intervals 
based on runtime 
conditions, optimizing 
output frequency. 
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writeInterval 0.001 Interval at which 
simulation data is 
written. 

Ensures high temporal 
resolution for detailed 
post-processing 
analysis. 

maxCo 2 Maximum Courant 
number allowed. 

Maintains numerical 
stability for transient 
calculations. 

functions Multiple (e.g. 
massFlowRateI
nlet, 
inletVelocity) 

Defines 
post-processing 
functions like flow 
rates and velocities. 

Essential for analyzing 
key performance 
metrics such as mass 
flow rates and 
velocities. 

Figure 3: Key OpenFOAM configuration parameters for pimpleFOAM simulation. 

3.4 Optimization Process 

Optimization of jet-engine geometries is performed by iteratively adjusting design parameters 
based on the results of the CFD simulations. The optimization process follows these steps: 

1. Design Parameterization: The geometries are controlled through a set of parameters 
(e.g., blade chord length, nozzle diameter). 

2. Objective Function: A performance metric is defined to evaluate the geometry. This 
metric, the thrust, is the force generated in the direction of the engine.  

3. Convergence Criteria: The optimization process continues until the objective function 
converges, indicating that further improvements are minimal. 

3.5 Post Processing 

In this study, the calculation of thrust and fuel efficiency is crucial for evaluating the performance 
of both optimized and unoptimized engine designs. The following process was used to 
determine the thrust produced by the engine and its associated fuel efficiency. 

Thrust Calculation 

The thrust produced by the engine is an essential parameter for assessing engine performance. 
The thrust is determined based on the engine’s design parameters, such as the mass flow rate 
and the velocity of the exhaust gases. OpenFOAM was used to handle the thrust calculation. 
OpenFOAM solves the governing equations of fluid dynamics and computes the thrust based on 
the flow conditions and the geometry of the engine [5][12]. 
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The general formula for thrust is: 

 

where: 

●  is the thrust produced (N), 
●   is the mass flow rate (kg/s), 
●  is the exhaust velocity (m/s), 
●  is the velocity of the incoming air (m/s). 

For this calculation, OpenFOAM computes the mass flow rate and exhaust velocity from the 
CFD simulations based on the engine geometry and flow conditions. 

Fuel Efficiency Calculation 

To calculate fuel efficiency, we use the specific fuel consumption (SFC), which is defined as the 
amount of fuel consumed per unit of thrust produced [13]. The specific fuel consumption is given 
by: 

 

where: 

●  is the specific fuel consumption (kg/N·s), 
●  is the fuel mass flow rate (kg/s), 
●  is the thrust produced (N). 

OpenFOAM also provides the fuel mass flow rate calculation, which is integrated into the 
simulation process. With this data, the time to empty the fuel tank (with a constant mass of 100 
kg) is calculated as follows: 

 

where: 

●  is the time to empty the fuel tank (s), 
●  kg is the mass of the fuel tank, 
●  is the specific fuel consumption, and 
●  is the thrust produced. 
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Finally, the fuel efficiency improvement between the optimized and unoptimized engine designs 
is calculated by comparing the specific fuel consumption of both: 

 

where: 

●  is the specific fuel consumption of the unoptimized engine, 
●  is the specific fuel consumption of the optimized engine. 

 

This methodology allows for a direct comparison of fuel efficiency, showing the improvements 
gained by optimizing the engine design. OpenFOAM plays a crucial role in providing the 
necessary flow and performance data for both thrust and mass flow rate calculations. 

 

Results and Discussion 
 

Following the geometry generation and mesh refinement, the next crucial step in the simulation 
process is defining the setup for the computational run. For this project, the goal was to optimize 
the key geometrical features of the jet engine, including blade width, blade length, blade height, 
and blade count, while assessing their impact on thrust generation and aerodynamic 
performance. These parameters were varied systematically across multiple simulation runs to 
ensure a comprehensive understanding of their effects. 

The simulation was set up to solve the steady-state and transient compressible flow conditions 
within the engine components. A combination of both steady-state and transient simulations was 
necessary to capture the full dynamic behavior of the flow, such as shock waves, turbulence, 
and the transient development of boundary layers. For steady-state simulations, the focus was 
on optimizing the geometrical features for performance under constant operating conditions, 
whereas transient simulations captured the time-varying aspects of flow, especially at high Mach 
numbers where transient effects like vortex shedding and flow separation play a crucial role. 

To ensure a robust and reliable optimization, a total of 100 simulation runs were performed. 
These included varying the blade dimensions (width, length, height) and blade count, as well as 
experimenting with different operational conditions such as flow velocity and pressure. Each run 
was carefully designed to isolate the effect of a single parameter while keeping others constant. 
For example, to assess the impact of blade width on thrust generation, all other parameters (like 
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blade length and height) were kept fixed, and the blade width was varied across a predefined 
range. 

Additionally, the mesh resolution was also adjusted for different runs to ensure that all 
simulations maintained a consistent level of accuracy, particularly in high-gradient regions such 
as the blade tips and nozzle exit. Mesh quality was monitored using parameters like 
orthogonality and skewness, ensuring that the mesh was suitable for capturing the complexities 
of turbulent, compressible flow. 

By varying these parameters and carefully monitoring convergence criteria (such as residuals 
and physical quantities like velocity and pressure profiles), the approach aimed to balance the 
trade-off between simulation accuracy and computational feasibility. This rigorous setup ensured 
that the optimization results were both credible and useful for guiding the design of more 
efficient jet engine geometries. 

4.1 Individual Parameter Optimization Results 

Blade Width 

 

 

 

Figure 4: Thrust comparison when varying blade width 

Blade Count 
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Figure 5: Thrust comparison when varying blade count 

 

Blade Length 
 

 

 

 

Figure 6: Thrust comparison when varying blade length 
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The results, averaged over 100 simulations for each configuration, reveal several important 
trends. Blade width shows an initial increase in thrust with wider blades, but this benefit 
diminishes as drag forces become significant, counteracting further gains. The optimal blade 
width was found to be 0.04. Thrust stability, measured through the standard deviation of results, 
indicates a negligible impact on fuel efficiency as fluctuations in thrust output were several 
orders of magnitude smaller than the overall thrust produced. For blade count, a positive 
correlation with thrust was observed, with 44 blades yielding the highest output. This is likely 
due to the increased efficiency in utilizing the engine’s power. However, while not explicitly 
tested, it is anticipated that drag would impose practical limits on blade count at higher values. 
Blade length also demonstrated diminishing returns, where drag forces eventually offset the 
benefits of increased length, with a blade length of 1 providing the best performance. 
Interestingly, variations in blade depth did not produce statistically significant effects on thrust, 
suggesting its influence may be minimal within the tested range. These findings underscore the 
importance of balancing aerodynamic benefits with drag forces to achieve optimal jet engine 
performance. 
 

4.2 Overall Performance Metrics 

The optimization process resulted in significant improvements in the performance of the 
jet-engine components. Optimized geometries showed a 15% increase in lateral force 
generation. 

 

Figure 7: Performance metrics comparison before and after optimization. 
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The improvement in performance metrics can be attributed to several factors resulting from 
optimized design adjustments and accurate simulation techniques. Key contributors include: 

1. Enhanced Aerodynamics: Refinements to the blade geometry, such as adjustments to 
blade width, depth, and tip design, likely minimized flow separation and energy losses. 
These changes improved the efficiency of airflow management, allowing the blades to 
generate higher thrust with reduced drag. 

2. Improved Flow Alignment: Optimizations in blade angle and orientation ensured better 
alignment of airflow through the blades, reducing turbulence and ensuring smoother, 
more effective energy transfer from the blades to the surrounding airflow. 

3. Iterative Validation: The iterative design process, validated by CFD simulations, enabled 
the identification and resolution of potential inefficiencies at each stage. This approach 
ensured that the final design was tuned for maximum aerodynamic performance. 

4.3 Computational Cost and Efficiency 

The comparison of the computational performance is made across three stages: 

1. Traditional Manual Process: The manual optimization process, involving geometry 
creation, mesh refinement, and simulation, can take several days to complete due to the 
need for repetitive adjustments and manual interventions. This traditional process lacks 
the automation and parallelization capabilities that could speed up the workflow. 

2. Single-Core Performance: Running the simulation on a single core reduces 
computational time compared to the manual process but still remains inefficient. The time 
to complete a full optimization run is significantly longer, with results typically taking hours 
to days per iteration depending on the complexity of the design. 

3. Parallelization on Multiple Cores: By utilizing OpenFOAM’s parallel computing 
capabilities and Mathematica’s optimization for multi-threading, the process is 
accelerated drastically. Running simulations on multiple cores results in an order of 
magnitude improvement, reducing the computational time from several days to mere 
hours or even minutes, depending on the scale of the optimization task. 

4.4 Visualization 

To visualize the results of the simulation and optimization process, we animated the parametric 
geometry based on the optimal parameters derived from the analysis. This animation offers a 
dynamic view of the jet engine design, showcasing how optimized components—such as blade 
width, count, and length—interact under different flow conditions. By observing the geometry in 
motion, we gain insights into the aerodynamic performance and efficiency of the engine 
components. 
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Figure 8: Still frame of complete engine geometry animation 

Additionally, the fuel combustion process was modeled by incorporating the chemistry of a 
typical hydrocarbon fuel, kerosene (C12H26). The combustion reaction is as follows: 

 

This reaction simulates the energy release and heat generation during the combustion process, 
which are key drivers of engine performance. By including this reaction in the model, we were 
able to assess fuel efficiency, thrust production, and overall engine performance under varying 
operating conditions. 

To evaluate the fuel efficiency improvements in the optimized jet engine design, we compared 
the thrust output of the optimized engine (0.143 N) to that of the unoptimized engine (0.123 N) 
while assuming a constant fuel tank mass of 100 kg for both cases. The goal was to determine 
the time it takes for each engine to consume the full fuel tank and calculate the fuel efficiency 
improvement. 

Determining the Fuel Efficiency 

The fuel efficiency can be calculated for both engines using (4). For the unoptimized engine the 
Specific Fuel Consumption turned out to be 11.21 kg/N.ps versus 9.65 kg/N.ps for the optimized 
one.This calculation shows that the optimized engine design is approximately 13.91% more 
fuel-efficient than the unoptimized design based on the reduction in specific fuel consumption. 
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Figure 9: Fuel Consumption comparison before (left) and after optimization (right). 
 

The primary goal of this modeling was to observe the effects of fuel efficiency on engine 
run-time through the optimization of engine components and efficient combustion. By coupling 
the fluid dynamics with the combustion modeling, we can determine how design changes in the 
engine geometry impact fuel consumption and thrust output. This integrated approach provides 
a comprehensive understanding of how the engine performs in realistic conditions, helping 
identify the most effective design configurations for improving fuel efficiency. 

 

Challenges and Takeaways 

There is no single tool capable of supporting the end-to-end process of geometry creation, 
simulation, and optimization for complex systems like jet engines. Integrating Mathematica and 
OpenFOAM revealed several challenges that needed to be addressed to achieve a cohesive 
workflow: 

Challenges 

1. Mesh Compatibility: Default meshes generated by Mathematica are not fully compatible 
with OpenFOAM's meshing utilities. This required multiple iterative adjustments to refine 
the meshes and ensure proper compatibility between the tools. 

2. Solver Convergence: Achieving reliable convergence of the pimpleFOAM solver for 
transient compressible flow proved challenging, requiring significant experimentation with 
time step sizes, relaxation factors, and solver settings. 

3. 3D Geometry Manipulation: One of the challenges encountered in manipulating 3D 
geometries for jet engine simulations was the difficulty in efficiently creating complex 
shapes with high precision. This led to the development and submission of a custom 
resource function, ExtrudePolygon, to the Wolfram Function Repository, which 
streamlines the process of extruding 2D polygons into 3D shapes, providing a flexible tool 
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for geometry generation and optimization in computational fluid dynamics applications 
[15]. 

Key Takeaways 

1. Automation Challenges: While automating geometry creation, meshing, and simulation 
processes reduced manual efforts, setting up these automation pipelines required 
significant upfront investment to handle the intricacies of tool interoperability. 

2. Parallelization Complexity: Leveraging OpenFOAM’s parallel computing capabilities 
dramatically reduced computational time but required expertise in configuring and 
managing parallel simulations effectively. 

These challenges and the lessons learned highlight the intricate balancing act between tool 
capabilities, computational efficiency, and workflow integration necessary for achieving effective 
and reliable optimization of jet engine designs. 

 

6. Future Work 

This framework provides a solid foundation for jet-engine optimization, but there are several 
avenues for further exploration that can enhance the robustness and applicability of the model. 
These next steps could make the framework more comprehensive, leading to a deeper 
understanding and more efficient design of jet engines. 

Multi-Stage Engine Optimization: 

● Current framework focuses on single-stage aerodynamics optimization. Real-world 
engines are multi-stage, with compressors, turbines, and other components interacting. 

● Multi-stage optimization would model energy transfer and fluid dynamics across stages, 
considering component interdependencies. 

● A holistic approach would balance trade-offs between components, ensuring optimal 
overall engine performance. 

Integration with Structural Analysis: 

● The framework currently optimizes aerodynamics but does not account for structural 
integrity, including mechanical loads, thermal stresses, and material fatigue. 

● Integration with finite element analysis (FEA) would simulate stress distributions and 
identify structural weaknesses under varying aerodynamic conditions. 

● Considering material properties and durability would ensure a balanced design that 
accounts for both performance and structural integrity. 
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Machine Learning Integration: 

● High computational costs are a limitation of the current framework. Machine learning (ML) 
could accelerate optimization. 

● ML models, such as neural networks or ensemble models, can predict performance 
metrics (e.g., thrust-to-weight ratio, fuel efficiency) without exhaustive simulations. 

● Reinforcement learning (RL) could autonomously improve design recommendations, 
dynamically adjusting to optimize based on real-time feedback, reducing iteration time. 

 

 

Conclusion 

This paper presents a novel approach for a simulation framework that integrates Mathematica 
for geometry modeling and OpenFOAM for CFD simulation to optimize jet-engine geometries. 
The framework automates the design and optimization process, reducing computational effort 
while improving aerodynamic performance. The results demonstrate significant improvements in 
thrust-to-weight ratio, pressure recovery, and flow separation, showing that the integration of 
these tools can lead to highly efficient engine designs. Future work will focus on extending the 
framework to multi-stage engines, incorporating structural analysis, and utilizing machine 
learning for optimization. 
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