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Abstract 
We present a series of steps that transform equal-mass collisionless planar three-body 
configurations into closed curves in . Exploiting a centre-of-mass constraint and a size ℝ3

constraint, we reduce the original configuration in  to . We then use a rotation and an ℝ6 ℝ4

additional normalisation to place these configurations on the -sphere , followed by a 3 𝑆3

stereographic projection onto . This procedure turns a periodic orbit into a closed curve that ℝ3

can be classified as a knot. We apply our method to the fifteen periodic configurations presented 
by Šuvakov and Dmitrašinović and show that most of these trajectories become the unknot 
under our projection. However, three orbits become trefoils and one becomes a figure-eight. We 
discuss possible directions for future work. 
 

Introduction 
This paper answers two questions: 

1. Can we find an orbit in each of the classes listed in the paper of Šuvakov and Dmitrašinović 
which is non-trivially knotted? No. 

2. Can two orbits with the same free group element have different knot types? Yes. 
 
The classical three-body problem has been studied by mathematicians and physicists since 
Newton found the closed-form for the two-body problem. In the 19th century, Poincaré showed 
that the general three-body problem is non-integrable [3]. Nonetheless, families of periodic 
orbits have been discovered and studied for their insights into -body systems. The planar case 𝑛
specifically is interesting to study as the planets of the solar system have been shown to lie in a 
plane [4][6]. 
 
In 2013, Šuvakov and Dmitrašinovic [5] made a significant advance by finding thirteen distinct 
collisionless periodic orbits of three unit masses confined to a plane, out of fifteen total 
examples (two already discovered). Since then, hundreds more planar periodic orbits have been 
discovered [1]. 
 
Montgomery, in [2], mapped planar configurations to the shape sphere . One step 𝑆2 ⊂ ℝ3

involved contracting  to  via a Hopf fibration. However, some information about the 𝑆3 ⊂ ℝ4 𝑆2

orbit is lost this way. A promising approach to studying these orbits is to rather represent 
 as , therefore preserving information. Motivated by Montgomery’s work, we 𝑆3 − {0, 0, 0, 1} ℝ3

propose a four-step procedure. Concretely, we start with the space of all reduced planar 
configurations, then: 

1. Impose a centre-of-mass constraint, reducing dimension by 2. 
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2. Perform a linear transformation to diagonalise the quadratic form which emerges from the 
previous mapping. 

3. Normalise the surface to . 𝑆3

4. Stereographically project  onto . 𝑆3 ℝ3

 
By following a periodic solution in time, the image of these maps becomes a closed curve in ℝ3

whose knot type can be identified. In this paper, we describe our mappings and illustrate their 
application to the fifteen orbits of Šuvakov and Dmitrašinović [5]. We then provide a table 
summarising the orbit classification results. We conclude by highlighting possible future work. 

Assumptions and Constraints 

We begin with three points masses of unit mass, indexed by each associated with a 𝑖 =  1, 2, 3 
position vector in . Thus, the initial configuration space is . We consider the 𝑃

→
=  (𝑥

𝑖
 ,  𝑦

𝑖
) ℝ2 ℝ6

set of configurations which adhere to the following two constraints. 
 

1. Centre-of-mass constraint: 

 
𝑖=1

3

∑ 𝑃
→

𝑖
= (0, 0).

2. Size constraint: 

 
𝑖=1

3

∑ ||𝑃
→

𝑖
||2 = 1.

Note that any three vectors may be scaled down such that they satisfy the size constraint by 
redefining the points as the following. 

. 𝑃
→'

𝑖
=

𝑃
→

𝑖

𝑖=1

3

∑ ||𝑃
→

𝑖
||2

The set of all such  adhering to both constraints lies on a 4 dimensional surface. (𝑃
→

1
,  𝑃

→

2
,  𝑃

→

3
)

The Procedure 
The four mappings are summarised in the following diagram. 

 ℝ6→𝐼ℝ4→𝐼𝐼ℝ4→𝐼𝐼𝐼𝑆3→𝐼𝑉ℝ3

Step I: Fixing Centre of Mass 
Since 

 
𝑖=1

3

∑ 𝑃
→

𝑖
= (0, 0).

we rearrange for  𝑃
→

3
:

2 



 𝑃
→

3
=  − (𝑃

→

1
+  𝑃

→

2
).

As a result, every configuration is determined by  and  alone. By the size constraint, 𝑃
→

1
𝑃
→

2

 ||𝑃
→

1
||2 + ||𝑃

→

2
||2 + ||𝑃

→

3
||2 = ||𝑃

→

1
||2 + ||𝑃

→

2
||2 + || − 𝑃

→

1
− 𝑃

→

2
||2 = 1.

Equivalently, 
 2𝑥

1
2 + 2𝑥

1
𝑥

2
+ 2𝑥

2
2 + 2𝑦

1
2 + 2𝑦

1
𝑦

2
+ 2𝑦

2
2 = 1.

Hence, Mapping I sends  to , subject to the above quadratic (𝑃
→

1
,  𝑃

→

2
,  𝑃

→

3
) ∈ ℝ6 (𝑥

1
, 𝑦

1
, 𝑥

2
, 𝑦

2
) ∈ ℝ4

constraint. 

Step II: Diagonalising the Quadratic Form 

Set  and . The previous constraint shows that 𝑋
→

= (𝑥
1
, 𝑥

2
) 𝑌

→
= (𝑦

1
, 𝑦

2
)

. 𝑋
→𝑇

1  2    
2  1( )𝑋

→
+ 𝑌

→𝑇

1  2    
2  1( )𝑌

→
= 1

Call the shared  matrix . We see that  has eigenvalues  and . To 2 × 2 𝐴 𝐴 λ
1

= 3 λ
3

= 1
diagonalise, we must find a  such that the rotation matrix θ

 𝑅(θ) =
sinθ      cosθ    
cosθ  −sinθ( )

satisfies 
 diag . 𝑅(θ)𝑇

1  2    
2  1( )𝑅(θ) = (3, 1)

Recall that  must satisfy θ

 tan(2θ) =
𝑎

12
+𝑎

21

𝑎
11

−𝑎
22

= 2
0 .

Thus , which in turn means θ =  π/4
. 𝑅 = 𝑅( π

4 ) = 1
2 1  1    

1  −1( )
Therefore, the new basis vectors are 

 and , 
𝑢

2   

𝑢
1  ( ) = 𝑅𝑇

𝑥
2   

𝑥
1  ( ) 𝑣

2   

𝑣
1  ( ) = 𝑅𝑇

𝑦
2   

𝑦
1  ( )

which satisfy 

 𝑢
1
  𝑢

2( )𝐴
𝑢

2   

𝑢
1  ( ) = 3𝑢

1
2 + 𝑢

2
2

and 

. 𝑣
1
  𝑣

2( )𝐴
𝑣

2   

𝑣
1  ( ) = 3𝑣

1
2 + 𝑣

2
2

The constraint becomes 
. 3𝑢

1
2 + 𝑢

2
2 + 3𝑣

1
2 + 𝑣

2
2 = 1

Therefore, Step II places the configuration on a hyperellipsoid in . ℝ4
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Step III: Normalising onto  𝑆3

We perform a change of variables to map the quadruple  onto . Define (𝑢
1
, 𝑢

2
, 𝑣

1
, 𝑣

2
) 𝑆3 ⊂ ℝ4

. (𝑠
1
, 𝑠

2
, 𝑡

1
, 𝑡

2
) = ( 3𝑢

1
, 𝑢

2
, 3𝑣

1
, 𝑣

2
)

By construction, we have that 

. 𝑠
1
2 + 𝑠

2
2 + 𝑡

1
2 + 𝑡

2
2 = 1

Hence,  must lie on  (𝑠
1
, 𝑠

2
, 𝑡

1
, 𝑡

2
) 𝑆3.

Step IV: Stereographic Projection of  to  𝑆3 − {0, 0, 0, 1} ℝ3

The trajectory crosses the point  only when there is a collision between two of the (0, 0, 0, 1)
bodies. Thus, we may remove the point  and project the remainder to . Formally, let (0, 0, 0, 1) ℝ3

 (𝑠
1
, 𝑠

2
, 𝑡

1
, 𝑡

2
) ∈ 𝑆3 − {(0, 0, 0, 1)}.

We define 

 (𝑥, 𝑦, 𝑧) =  
𝑠

1

1−𝑡
2

,
𝑡

1

1−𝑡
2

,
𝑠

2

1−𝑡
2

( ).

This yields a bijection from  to . Therefore, under the compositions of Steps 𝑆3 − {(0, 0, 0, 1)} ℝ3

I-IV, each configuration  becomes a closed loop in . (𝑃
→

1
, 𝑃

→

2
, 𝑃
→

3
) ℝ3

Closed Loops and Knot Classification 

Let  be a periodic collisionless planar orbit with period  which 𝐿 = (𝑃
→

1
(𝑡), 𝑃

→

2
(𝑡), 𝑃

→

3
(𝑡)) 𝑇 > 0

adheres to the centre-of-mass condition and the size condition. Represent  as , 𝐿 (𝑥
1
,  𝑦

1
, 𝑥

2
, 𝑦

2
)

as described in Step I. Under the mappings presented in Step II, Step III and Step IV, we are 
given a continuous curve 

 𝐶: [0, 𝑇] → ℝ3,
where 

, 𝐶 (𝑡) = (𝐼𝑉 ◦ 𝐼𝐼𝐼 ◦ 𝐼𝐼)(𝑥
1
, 𝑦

1
, 𝑥

2
, 𝑦

2
) 

mappings , , and  represent the mappings outlined in Step II, Step III, and Step IV 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉
respectively, and  We can now classify  as a knot. 𝐶(0) =  𝐶(𝑇). 𝐶

Application to Šuvakov and Dmitrašinovic’s Orbits. 
We attempt to classify the trajectories which Šuvakov and Dmitrašinović discovered in [5]. We 
first numerically approximated each configuration with a Runge-Kutta algorithm with linear step 
size 0.0001 until a period elapsed. Restriction to one period made error and deviation practically 
negligible. Subsequently, we translated and scaled the collection or positions to follow the size 
and centre-of-mass constraints before applying the mappings in Step II, Step III and Step IV. To 
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determine knot type, we projected the orbit to an orthogonal unit basis, then applied 
Reidemeister moves. 
 
Some orbits are easily determinable, such as I.A.2 butterfly II, while others are more difficult, 
such as I.A.1 butterfly I. Both trajectories are shown in Figure 1. Figure 2 shows how a curve 
can be simplified using Reidemeister moves. 

 
Figure 1. I.A.2 butterfly II (left) and I.A.1 butterfly I (right). Lighter colours denote higher elevation 
(when viewed in 3D after Step IV). 
 

 
Figure 2. I.A.2 butterfly II being deformed into the unknot. The red circles show the crossings 
being acted upon. Operations I, II, and III represent their corresponding Reidemeister moves. 
 
The following table summarises our classifications of each orbit. We include the initial velocity 
parameters, , the free group element, as given in [5], and the resulting knot type. We �̇�(0),  �̇�(0)
see that class II.C does not have an orbit which is non-trival—thus, not every class has a 
non-trival knot. We also notice that I.A.1 butterfly I and I.A.2 butterfly II have the same 
free-group element, yet have different knot types, therefore answering both of our questions. 
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Class, Number, and Name  �̇�(0)  �̇�(0) Free Group Element Knot 
Classification 

I.A.1 butterfly I 0.30689 0.12551  (𝑎𝑏)2(𝐴𝐵)2 trefoil 

1.A.2 butterfly II 0.39295 0.09758  (𝑎𝑏)2(𝐴𝐵)2 unknot 



 
Table 1. Initial conditions of the three-body orbits and knot classification. Labelling for the orbits 
follow what is written in [5]. Quantities and  are the th body's initial velocities in the  �̇�

𝑖
(0) �̇�

𝑖
(0) 𝑖 𝑥

and  direction, respectively. The values  and  are the th body's positions in the  𝑦 𝑥
𝑖
(0) 𝑦

𝑖
(0) 𝑖 𝑥

direction and  direction, respectively. The initial velocities of the bodies are 𝑦
, The initial �̇�

1
(0) = �̇�

2
(0) =  �̇�(0),  �̇�

3
(0) =− 2�̇�(0), �̇�

1
(0) =  �̇�

2
(0) =  �̇�(0) �̇�

3
(0) =− 2�̇�(0).  

positions of the bodies are ,  The 𝑥
1
(0) =− 𝑥

2
(0) =− 1, 𝑥

3
(0) =  0 𝑦

1
(0) = 𝑦

2
(0) = 𝑦

3
(0) = 0.

gravitational constant  is taken to be 1 and the masses are equal and taken to be 𝐺 𝑚
1
,  𝑚

2
,  𝑚

3
 

1. 
 1(𝑏(𝐴𝐵𝑎𝑏)^2 𝐴^2 (𝑏𝑎𝐵𝐴)^2 𝑏𝑎) (𝐵^2 (𝑎𝑏𝐴𝐵)^2 𝑎^2 (𝐵𝐴𝑏𝑎)^2 𝐵𝐴)
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I.A.3 bumblebee 0.18428 0.58719  1 unknot 

I.B.1 moth I 0.46444 0.39606  𝑏𝑎(𝐵𝐴𝐵)𝑎𝑏(𝐴𝐵𝐴) figure-eight 

I.B.2 moth II 0.43917 0.45297  (𝑎𝑏𝐴𝐵)2𝐴 (𝑏𝑎𝐵𝐴)2 unknot 

I.B.3 butterfly III 0.40592 0.23016  (𝑎𝑏)2(𝐴𝐵𝐴)(𝑏𝑎)2(𝐵𝐴𝐵) unknot 

I.B.4 moth III 0.38344 0.37736  (𝑏𝑎𝑏𝐴𝐵𝐴)2𝑎(𝑎𝑏𝑎𝐵𝐴𝐵)2𝑏 unknot 

I.B.5 goggles 0.08330 0.12789  (𝑎𝑏)2𝐴𝐵𝐵𝐴(𝑏𝑎)2𝐵𝐴𝐴𝐵 trefoil 

I.B.6 butterfly IV 0.350112 0.07934  ((𝑎𝑏)2(𝐴𝐵)2)6𝐴((𝑏𝑎)2(𝐵𝐴)2)6𝐵 unknot 

I.B.7 dragonfly 0.08058 0.58884  (𝑏2(𝐴𝐵𝑎𝑏𝐴𝐵))(𝑎2(𝐵𝐴𝑏𝑎𝐵𝐴)) unknot 

II.B.1 yarn 0.55906 0.34919  (𝑏𝑎𝑏𝐴𝐵𝑎𝑏𝑎𝐵𝐴)3 trefoil 

II.C.2a yin-yang I 0.51394 0.30474  (𝑎𝑏)2(𝐴𝐵𝐴)𝑏𝑎(𝐵𝐴𝐵) unknot 

II.C.2b yin-yang I 0.28270 0.32721  (𝑎𝑏)2(𝐴𝐵𝐴)𝑏𝑎(𝐵𝐴𝐵) unknot 

II.C.3a yin-yang II 0.41682 0.33033  (𝑎𝑏𝑎𝐵𝐴𝐵)3(𝑎𝑏𝑎𝐵𝐴𝑏𝑎𝑏)(𝐴𝐵𝐴𝑏𝑎𝑏)3(𝐴𝐵)2 unknot 

II.C.3b yin-yang 0.41734 0.31310  (𝑎𝑏𝑎𝐵𝐴𝐵)3(𝑎𝑏𝑎𝐵𝐴𝑏𝑎𝑏)(𝐴𝐵𝐴𝑏𝑎𝑏)3(𝐴𝐵)2 unknot 



Conclusion 
We presented a series of four consecutive mappings which turn a periodic three-body planar 
equal-mass system into a closed loop in , allowing the orbit to be classified as a knot. ℝ3

 
Afterwards, we applied the mappings to the fifteen trajectories Šuvakov and Dmitrašinović 
displayed in [5], showing that the majority of the orbits can be classified as the unknot. But, 
three yield the trefoil knot and another produces the figure-eight, showing that nontrivial 
knotedness is possible. 
 
Future work could be dedicated to applying the mappings described previously to more periodic 
orbits, such as the results presented in [1], to see if more complicated knot types emerge or 
proving that only a certain set of knots are able to appear. Another avenue to consider would be 
to generalise the mappings to non-identical masses. 
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