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Abstract—This paper introduces a 
structured framework to understand the 
interdisciplinary relationship between 
neuroscience and engineering. It 
proposes two distinct but interconnected 
stages of interaction: (1) 
engineering-driven applications, where 
engineering tools facilitate the study and 
manipulation of neural processes, and (2) 
biology-driven innovation, where 
principles from neuroscience inspire the 
development of novel engineering 
systems. Through a review of recent 
research and technology, the study 
elucidates how these bidirectional 
influences co-evolve, fostering progress 
in areas ranging from neural data  
acquisition to neuromorphic computing. 
This framework not only clarifies the 
mutual influence of these fields but also 
highlights opportunities for future 
cross-disciplinary collaborations. 

I. Engineering-Driven Interactions 

The first stage of interaction, 
engineering-driven applications, centers on 
the development and implementation of 
engineering solutions to address challenges 
in neuroscience. This stage is defined by the 
use of engineering tools, computational 

techniques, and novel sensing and 
stimulation devices. Rather than primarily 
drawing from biological insights, it adopts an 
engineering mindset: designing technologies 
that enhance our ability to study and interact 
with the brain. 

A prominent example is the development of 
deep brain–machine interfaces (DBMIs), 
which translate neural activity into 
measurable digital signals and also provide 
an option of utilizing them as control signals 
for external devices. These systems rely on 
advancements in electrical engineering, 
signal processing, and machine learning to 
interface with deep brain structures such as 
the basal ganglia, thalamus, and 
hippocampus. Progress in this area is 
essential for advancing both neuroscience 
research and its clinical applications.  

 

 

 

 

 

 

Figure 1. Deep brain–machine interface illustrating signal 
acquisition from deep brain structures, processing, and control of 
an external device. 

Figure  1 illustrates how implanted 
microelectrodes in deep brain regions—the 
basal ganglia, thalamus, and 
hippocampus—record neuronal voltage 
fluctuations that are routed to a 
signal‑processing unit. There, the signals 
are decoded into control commands and 
sent to an external device, enabling 
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real‑time translation of the user’s intentions 
into action, with feedback loops continuously 
refining performance over time. 

To illustrate the variety of devices used in 
this stage, we compare three examples. The 
HH128 device, produced by SpikeGadgets, 
was used by Kleinman, M. R., & Foster, D. 
J. (2024) [1] to record electrophysiological 
activity from the dorsal CA1 in freely 
behaving rats to gather spatial and 
navigational information. In contrast, Tara 
O'Driscoll (2023) [2] employed the 
MouseLog-16C for wireless recordings of 
head direction cells in the anterodorsal 
thalamic nucleus (ADN) of developing rat 
pups. This setup enabled 
natural-environment recordings and 
minimized sensory disruption while studying 
early spatial cell development. Furthermore, 
Kendall-Bar et al. (2023) [3] used the 
Evolocus Neurologger 3 in a custom 
submersible system to record EEG and 
ECG data from free-ranging northern 
elephant seals. This allowed the 
identification of underwater sleep patterns 
and the development of a sleep-scape map 
of elephant seals in the North Pacific. 

An important advancement of DBMIs is their 
shift from traditional brain–machine 
interfaces (BMIs), which primarily focus on 
cortical decoding—the extraction of 
information from cerebral cortex activity. In 
contrast, DBMIs target subcortical structures 
that are critical for cognition, emotion, and 
essential life functions. The HH128, 
MouseLog-16C, and Neurologger 3 can all 
be considered DBMIs, as they record from 
or stimulate deep brain structures such as 
the basal ganglia, limbic system, 

diencephalon, brainstem, hippocampus, and 
cerebellum. Traditional BMIs, however, are 
typically limited to the cortical surface. 

The transition from BMIs to DBMIs illustrates 
the growing contribution of engineering in 
data collection and neural region stimulation. 
With these interdisciplinary advancements, 
DBMIs aim to restore lost functions, 
suppress pathological activity, and modulate 
mood and cognition. They can repair, 
enhance, or reprogram malfunctioning brain 
circuits associated with neurological and 
psychiatric disorders. As Sui et al. (2022) [4] 
note, "DBS is a successful interface for the 
clinical treatment of many neurological and 
psychiatric disorders... Parkinson’s disease, 
essential tremor, and dystonia... Other 
disorders such as epilepsy and Alzheimer’s 
disease have become new frontiers for DBS 
applications.” 

Machine learning, especially deep learning, 
has become a key part of engineering-driven 
brain–machine interfaces (BMIs). In the 
past, these systems depended on manually 
selected features from brain signals, which 
made them hard to generalize and required 
long setup times. Today, deep learning 
models like EEGNet can automatically learn 
important patterns in the data without 
needing handcrafted features, making them 
more flexible and easier to use across 
different people and situations (Ferrero et 
al., 2024) [5]. 

For example, as summarized in figure 2, 
Ferrero et al. (2024) [5] used a deep 
learning approach to control a robotic 
exoskeleton using brain signals. They 
trained their model on  data from many 
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people, then quickly adapted it for each 
individual user. This helped reduce the time 
needed for calibration while keeping the 
system accurate and responsive. In another 
study, Khademi et al. (2023) [6] showed how 
deep learning can improve BMI systems by 
better detecting the user’s motor intentions 
and reducing the need for manual tuning. As 
BMIs continue to develop, machine learning 
will play an increasingly important role in 
making them more reliable, faster to use, 
and better suited for real-world applications. 

Figure 2. EEG-based Brain-Machine Interface using deep learning 
to control a robotic arm. 

II.            Biology-Driven Interactions 

The second stage of interaction is 
biology-driven, where engineering 
applications are inspired by biological 
insights. In this stage, neural mechanisms 
inform the design of algorithms and control 
systems, enabling machines to simulate 
cognitive and adaptive behaviors to solve a 
multitude of computationally complex 
problem efficiently. These systems 
especially aim to mimic the extreme energy 
efficiency and self directness of the natural 
neurons. To illustrate this process, we 

conducted a literature survey highlighting 
key examples of biologically inspired 
engineering models. 

One such example is the development of 
Bio-GWM, a biologically inspired learning 
interface modeled after cognitive control and 
memory updating mechanisms of the human 
prefrontal cortex and basal ganglia (Zhang 
et al., 2024) [7]. These neural functions are 
translated into learning rules that allow 
machines to perform instructed vision tasks 
with increased flexibility and contextual 
awareness. 

Similarly, Arena et al. (2008) [8] 
demonstrated how insect locomotion and 
neural control systems can inform robotic 
movement. Their study integrated 
biologically inspired components such as 
Spiking Neural Networks (SNNs), Central 
Pattern Generators (CPGs), and modular 
design principles. SNNs replicate the way 
biological neurons communicate via discrete 
spikes, facilitating event-driven computation 
that mirrors real neural processing. CPGs 
model rhythmic neural circuits responsible 
for actions like walking or swimming, 
enabling adaptive locomotion without 
continuous sensory input. Finally, modular 
neural control allows each leg of the robot to 
function semi-autonomously while 
maintaining coordinated motion—enhancing 
robustness and fault tolerance. 
While some biologically inspired models are 
primarily intuitive or structural, others 
incorporate learning processes that mimic 
how the brain adapts to stimuli. Mostafa, 
Salama, and Wahbah (2023) [9] describe 
SNNs that learn via spike-timing-dependent 
plasticity (STDP)—a biologically plausible 
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mechanism where synaptic strength is 
adjusted based on the timing of spikes 
between neurons. This allows SNNs to learn 
in real time, closely emulating the way the 
brain forms and strengthens associations. 
Another critical consideration in 
biology-driven models is the trade-off 
between complexity and computational 
efficiency. Lightweight models offer faster 
decision-making and predictability, while 
more complex models provide greater 
adaptability and generalizability in uncertain 
environments. For example, Sánchez et al. 
(2021) [10] showed that incorporating 
adaptive thresholding, STDP, and 
homeostatic regulation—features that 
increase biological fidelity—enhances the 
learning capability and robustness of SNNs. 
However, these benefits come with 
increased computational costs, illustrating 
the balance between model performance 
and efficiency. 
 

Interaction 
Stage Key Example Core Concept Discipline 

Leveraged 

Engineering- 
Driven 

Deep Brain– 
Machine 

Interfaces 
(DBMIs) 

Neural data 
acquisition & 

control 

Electrical 
engineering, AI 

Engineering- 
Driven 

EEGNet + 
Exoskeleton 

Calibration-light 
brain decoding 

Deep learning, 
signal 

processing 

Biology-Driven Bio-GWM 
Cognitive 
control for 

flexible learning 

Neuroscience, 
computer vision 

Biology-Driven 
SNN + CPGs + 

modular 
robotics  

Rhythmic, 
adaptive 

locomotion 
Biology, robotics 

Table I. This table highlights how engineering aids 
neuroscience (top two rows) and how neural principles 
inspire technology (bottom two rows). 

III.                   Conclusion 

The relationship between neuroscience and 
engineering is not unidirectional but 
co-evolutionary. Table 1 provides an 
overview of the two-stage framework to 
classify and analyze the interdisciplinary 
interactions between these fields. The first 
stage—engineering-driven 
applications—emphasizes the development 
of tools such as the HH128, MouseLog-16C, 
and Evolocus Neurologger 3, which enable 
more precise observation and modulation of 
neural activity. The transition from traditional 
BMIs to DBMIs reflects engineering's 
expanding role in clinical and research 
settings, particularly in addressing 
neurological and psychiatric disorders. 
The second stage—biology-driven 
applications—demonstrates how insights 
from neural systems inspire engineering 
innovations. From event-based learning 
mechanisms in SNNs to biologically 
structured robotic control systems, this stage 
shows how closely biological function can be 
mapped onto artificial systems. These 
models not only replicate neural behavior 
but also introduce novel ways to solve 
engineering problems. 
Together, these two stages underscore the 
dynamic and reciprocal relationship between 
neuroscience and engineering. By 
continuing to integrate these disciplines, 
researchers can expect to make substantial 
advancements in neurotechnology, robotics, 
medicine, and artificial intelligence. As the 
boundaries between biological and artificial 
systems continue to blur, fostering effective 
interdisciplinary collaboration becomes 
increasingly essential. 
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