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Abstract 
 
Dysarthria, a motor speech disorder affecting control of speech muscles, is a common early 
symptom of Parkinson’s Disease (PD), making voice analysis a promising tool for early 
detection. Acoustic biomarkers derived from sustained vowel phonations have shown potential 
for PD detection. This study develops a multimodal transformer model that integrates 
engineered acoustic features with log-Mel spectrogram embeddings to classify PD from 
sustained /a/ phonations. Eight acoustic features—mean fundamental frequency (F0), local 
jitter, local shimmer, detrended fluctuation analysis (DFA) exponent, pitch period entropy (PPE), 
recurrence period density entropy (RPDE), pitch variability, and harmonics-to-noise ratio 
(HNR)—were extracted using Librosa and Parselmouth and processed through a numerical 
branch. In parallel, log-Mel spectrograms were encoded with pretrained CNN backbones 
(ResNet18, EfficientNet_B0, MobileNet_V3_Large) in an image branch. A transformer layer 
integrated both modalities, with a final classifier predicting PD vs. healthy controls. Two datasets 
were combined: D1 with 81 recordings (41 HC, 40 PD; average ages 47.7 ± 14.3 and 67.0 ± 9.0 
years) and D2 with 99 recordings (44 HC, 55 PD; average ages 67.1 ± 5.2 and 67.2 ± 8.7 
years), yielding 180 recordings (85 HC, 95 PD). Data were split 80% training, 10% validation, 
and 10% testing. Models were trained with a learning rate of 1e-4, batch size 32, and 10 epochs 
across 5 independent runs. The best model achieved an accuracy of 0.93 ± 0.07, precision of 
0.96 ± 0.05, recall of 0.91 ± 0.08, and F1-score of 0.94 ± 0.06, with stable training and validation 
loss convergence. These findings suggest that lightweight multimodal fusion of engineered 
acoustic and spectrographic features outperforms single-modality baselines and holds promise 
for scalable, noninvasive voice-based PD screening. 
 
Keywords: Parkinson’s Disease, voice analysis, multimodal deep learning, acoustic features, 
log-mel spectrograms, transformer models 
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1. Introduction 
 
Parkinson’s Disease (PD) is a progressive neurodegenerative disorder that impairs motor 

function and cognition, manifesting in tremors, rigidity, bradykinesia, and postural instability. As 
medical technology advances and life expectancy increases, the prevalence of PD and other 
chronic conditions has risen correspondingly. Despite this, PD remains challenging to diagnose, 
particularly in its early stages. Even expert clinical assessments misclassify up to 15% of cases, 
with higher error rates reported among non-experts. Most PD symptoms remain undetected for 
long periods, with diagnosis often delayed by up to 10 years [1]. Earlier and more efficient 
means of detection of PD may be a key factor in providing proper treatment and halting disease 
progression, and a supplementary tool that can help identify the disease could play a major role 
in saving lives.  

The clinical diagnosis of PD involves the identification of four key motor symptoms. Postural 
instability can lead to changes in posture and a loss in balance which can increase the risk of 
dangerous falls. Tremors commonly develop in the hands or in the jaw, leading to a rhythmic 
back-and-forth motion in the affected area. Rigidity can also affect the passive movement of 
limbs or the jaw and cause pain. Bradykinesia, or the slowness of movement, is the most 
characteristic of PD. Planning, initiation, and execution of movements are significantly slowed, 
leading to decreased reaction times and movement speeds. Bradykinesia can also manifest as 
hypophonic dysarthria, characterized by a monotone and breathy voice that is reduced in 
volume [2-4]. 

Tremors, rigidity, and bradykinesia can be identified as the physiological basis of speech 
impairment in PD. The lips, tongue, jaw, and vocal tract that serve as the producers and 
controllers of speech can be affected by tremors and rigidity, leading to decreased velocity and 
amplitude of movement [5]. This phenomenon can explain the reduced volume and imprecise 
articulation of speech in PD patients. 

Previous studies have leveraged deep learning frameworks to identify PD through a variety 
of different modalities including speech, handwriting, and gait [6-10]. However, relatively few 
have combined engineered numerical features with spectrogram representations in a 
multimodal framework. 

The multimodal approach processes multiple types of data during the learning process to 
improve decision making and classification. Multimodal deep learning models have previously 
displayed improved feature learning performance, as displayed in the study shown in [11] using 
both audio and video data for improved speech recognition. Multimodal approaches are also 
often common in medical research, particularly image segmentation to process multiple forms of 
medical imaging such as MRI, CT, PET, and others [12].  

In this study, we leverage multimodal learning to analyze sustained vowel phonations from 
PD patients. Specifically, we propose a transformer-based architecture that integrates 
engineered acoustic features with spectrogram embeddings for binary classification of PD 
versus healthy controls. By incorporating both numerical and visual representations of speech, 
the proposed model has the potential to serve as a supplementary clinical tool, improving early 
detection of PD. 
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Figure 1. Flowchart of the proposed PD deep learning detection procedure. 
 
2. Methods 

 
2.1 Dataset 

 
To improve robustness and generalizability, we combined two distinct speech datasets (D1 

and D2), each containing sustained vowel recordings from both healthy and diseased 
participants. This integration helped increase the total sample size, enabling more effective 
model training and preventing overfitting. 

All recordings capture a sustained /a/ phonation. D1 [13] consists of 81 total recordings (41 
HC, 40 PD) from 41 English-speaking HC participants (25 female, 16 male, average age 
47.7±14.3 years) and 40 English-speaking PD participants (19 female, 21 male, average age 
67.0±9.0 years). D2 [14] consists of 99 total recordings (44 HC, 55 PD) from 22 Italian-speaking 
HC participants (12 female, 10 male, average age 67.1±5.2 years) and 28 Italian-speaking PD 
participants (9 female, 19 male, average age 67.2±8.7 years. The combined dataset contains 
180 total recordings (85 HC, 95 PD) allowing for more effective training and reducing the 
overfitting risk. 
 
2.2 Features 

 
We extracted a total of eight numerical features commonly used in PD voice analysis [15] 

from each audio file for the numerical branch. We also generated log-Mel spectrograms for the 
image branch. Numerical features were extracted using the librosa and parselmouth packages. 
Spectrograms were created using the librosa package [16, 17]. 
 
2.2.1 Mean Fundamental Frequency (F0) 
 
F0 (Hz) is the average rate at which the vocal folds vibrate across the voiced segment. 
Dysarthria often shifts average pitch, and F0 statistics are consistently included in voice feature 
sets in PD speech pathology studies. 
 
2.2.2 Local Jitter (Jitter) 
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Jitter (%) is the small, random variations in pitch period, or the duration of a cycle of a vocal fold 
vibration. A higher jitter indicates higher vocal fold instability and impaired laryngeal control. 
 
2.2.3 Local Shimmer (Shimmer) 
 
Shimmer (dB) is the variation in amplitude in irregular vocal fold vibration, indicating variation in 
volume. A higher shimmer indicates less control over vocal amplitude. 
 
2.2.4 Detrended Fluctuation Analysis (DFA) Exponent 
 
DFA quantifies long-range correlations in the F0 signal. It is a nonlinear measurement of the 
turbulent noise in a speech signal caused by unstable air flow in the vocal tract shown to be 
indicative of PD. The DFA correlates to dysphonias caused by incomplete vocal fold closure. 
 
2.2.5 Pitch Period Entropy (PPE) 
 
PPE is a nonlinear measurement of the unpredictability in pitch variation correlated to 
deteriorating muscle coordination in the vocal folds. 
 
2.2.6 Recurrence Period Density Entropy (RPDE) 
 
RPDE is a nonlinear measurement of the predictability of recurring voice structures and 
patterns, correlating to the ability of the vocal folds to sustain simple vibration. 
 
2.2.7 Pitch Variability 
 
Pitch variability is the spread of fundamental frequency across the phonation, corresponding to 
a more monotonic voice characteristic of PD. 
 
2.2.8 Average Harmonics-to-Noise Ratio (HNR) 
 
HNR is a measurement of the clarity of voice, measuring the ratio between harmonic and noise 
components of the signal. Lower HNR is indicative of increased breathiness and noise caused 
by dysphonia in PD patients. 
 
2.2.9 Spectrogram Images 
 
To capture time-frequency patterns of the sustained /a/ phonations, we created a log-Mel 
spectrogram for the middle 1.5 second window of each recording. The Mel scale provides a 
perceptual scale where equal “mel” increments correspond to equal perceived pitch differences 
[18]. Instead of linear frequency scales, we convert the frequency axis to the mel scale before 
applying a logarithmic compression. This mimics human perception of both pitch differences and 
loudness differences, making log-Mel spectrograms the mode of choice for image 
representations of speech pathology in deep learning models [19, 20]. We then normalized the 
spectrograms to a 0 to 1 scale to create more stable training and cross-speaker comparisons. 
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2.3 Model Design 
 
The proposed multimodal transformer model jointly analyzes spectrogram images and the eight 
engineered acoustic features. We constructed the model using PyTorch [21]. The image branch 
is based on a lightweight convolutional neural network (CNN). To identify the most effective 
architecture, we evaluated three pretrained backbones: ResNet18, EfficientNet_B0, and 
MobileNet_V3_Large. For each, the final classification layers were removed, and the 
penultimate feature embeddings were retained for fusion. 
The numerical branch is implemented as a feed-forward neural network with two fully connected 
layers. Input features are first projected to 64 dimensions, followed by a second projection to 
128 dimensions. Each layer is followed by ReLU activation, batch normalization, and dropout 
(p=0.2) to mitigate overfitting. 
Outputs from the two branches are concatenated to form a unified multimodal feature 
representation. This combined vector is processed by a classification head consisting of a fully 
connected layer (128 dimensions), ReLU activation, batch normalization, and dropout (p=0.4). A 
final linear layer outputs the binary prediction (PD vs. control). 
 
2.4 Training Procedure 
 
The model was trained on an 80% training, 10% testing, and 10% validation split. For each CNN 
backbone, we ran five independent trials with different random seeds and identical 
hyperparameters. We report mean ± standard deviation across the five runs. 
 
2.4.1 Hyperparameters 
 
We used the Adam optimizer, a learning rate of 1e-4, the CrossEntropyLoss function, a batch 
size of 32, and 10 epochs for training. 
 
Table 1. List of hyperparameters used to train the proposed multimodal transformer model 
Optimizer Adam 

Learning Rate 1e-4 

Loss Function CrossEntropyLoss 

Batch Size 32 

Epochs 10 
 
2.4.2 Evaluation Metrics 
 
We collected four evaluation metrics: accuracy, precision, recall, and F1-score.  
 
2.4.3 Accuracy, Precision, Recall, and F1-Score 
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Accuracy 
𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇 

𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 +  𝐹𝐹𝐹𝐹
 

 
Accuracy indicates the proportion of correctly classified samples. 
 
Precision 

𝑇𝑇𝑇𝑇 
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹

 
 
Precision indicates the proportion of predicted positive samples that were true positives. 
 
Recall 

𝑇𝑇𝑇𝑇 
𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹

 
 
Recall indicates the proportion of true positive samples that were correctly identified. 
 
F1-Score 

2 ⋅
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋅  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 

 
F1-score indicates the harmonic mean of precision and recall. 
 
3. Results 
 
Table 2. Performance measures of the multimodal transformer model using different pretrained 
CNN backbones (mean ± standard deviation). 
 ResNet18 EfficientNet_B0 MobileNet_V3_Large 

Accuracy 0.93 ± 0.07 0.73 ± 0.09 0.74 ± 0.07 

Precision 0.96 ± 0.05 0.77 ± 0.17 0.75 ± 0.09 

Recall 0.91 ± 0.08 0.75 ± 0.13 0.85 ± 0.13 

F1-Score 0.94 ± 0.06 0.74 ± 0.11 0.79 ± 0.09 
 
The best results came from the model with the ResNet18 CNN architecture as the model 
achieved an average accuracy of 0.93 ± 0.07, average precision of 0.96 ± 0.05, average recall 
of 0.91 ± 0.08, and average F1-score of 0.94 ± 0.06 across the five runs. Overall, the model 
demonstrated strong and consistent performance, with stable training and validation loss curves 
across all runs, outperforming existing approaches. 
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Figure 2. Left: Training loss curves across 5 independent runs using the pretrained ResNet18 
CNN as the backbone for the image branch of the multimodal transformer. 
Right: Validation loss curves across 5 independent runs using the pretrained ResNet18 CNN as 
the backbone for the image branch of the multimodal transformer. 
 
4. Discussion 

 
This study demonstrates the feasibility of using a multimodal deep learning framework that 

integrates spectrogram and acoustic numerical representations to detect PD from sustained 
vowel phonations. Our high results reinforce the hypothesis that combining complementary 
modalities can improve PD classification. While spectrograms only capture temporal and 
frequency-based information, numerical features can provide well-established clinical markers of 
PD through representations of the vocal tract or signs of dysphonia. Integrating these 
representations through a multimodal network allows the model to learn relationships between 
frequency-time and quantitative speech patterns. 

Previous efforts using multimodal approaches have reported promising results but run high 
risks of overfitting, largely due to limited training data. Several multimodal studies report high 
performance but rely on smaller cohorts and aggressive model capacity. Studies performed in 
[6], [7], and [9] use relatively small datasets and do not show training or validation loss curves, 
leaving very little information to do with training-stability. [8] uses a dataset larger than the 
others (N=584), but only displays the history of the risk function on the testing data for just one 
cross-validation data set. 

By combining multiple datasets, we mitigated the overfitting risk considerably and 
demonstrated stable training, as evidenced by relatively consistent validation loss curves across 
five independent runs. The stability underscores the robustness of the proposed architecture. 

From a clinical perspective the results highlight the potential of voice-based biomarker 
analysis as a non-invasive supplementary tool for PD screening. The ability to collect sustained 
phonation recordings and analyze them automatically makes this approach particularly 
promising for cheap and accessible early detection. Incorporating such tools into clinical 
workflows could increase diagnostic accuracy with minimal effort and reduce delays in 
identification of PD onset, facilitating earlier intervention and improved patient outcomes. 
 
4.1 Limitations and Future Work 
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Despite the promising results, several limitations must be acknowledged. First, although the 

dataset used in this study is larger than those in previous studies, it remains relatively small for 
deep learning. Though validation loss curves are relatively stable, they plateaued near epoch 7, 
indicating that the risk of overfitting, while reduced, has not been fully eliminated. Second, the 
dataset was constructed by combining recordings from multiple sources. Although this approach 
increased both sample size and diversity, it may also have produced unintended consequences 
affecting model learning. Combining datasets may have introduced confounding variability such 
as differences in microphone quality, ambient noise, and recording protocols. Third, the 
recordings were restricted to sustained /a/ vowel phonations. Though studies have shown that 
sustained vowel phonations are more successful in indicating the presence of PD, simple 
phonations may limit the model’s ability to capture more nuanced and dynamic features of 
natural speech. 
Future work should focus on expanding the dataset both in size and variety. Consolidating 
larger collections of voice recordings could help reduce overfitting and improve generalizability. 
Using techniques such as data augmentation and random transformations could help increase 
dataset size. To improve clinical relevance, continuous speech and additional phonation types 
could be included to capture subtler patterns of dysphonia and bradykinesia. Finally, external 
validation on independent cohorts will be essential for assessing robustness and ensuring 
translational potential in real-world clinical settings. With these improvements and development 
of workflow integration, deep learning models such as the one presented in this study shows 
promise in incorporation into such real-world clinical settings. 
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