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Abstract: 

This paper investigates sentiment analysis for Tamil-English code-mixed text, a common feature 
of social media communication in multilingual regions. Code-mixing in Romanized Tamil 
introduces challenges such as inconsistent spelling, transliteration, and noisy syntax that 
traditional models are not designed to handle. Using the FIRE-DravidianCodeMix 2020 dataset, 
we evaluated sentiment classification with lexicon-based methods, classical machine learning 
models, deep learning (LSTM), the multilingual transformer RemBERT, and hybrid approaches 
combining lexicon-based features with machine learning models. Results showed that classical 
models such as Logistic Regression, Naive Bayes, and SVM achieved the most stable 
performance, reaching around 69% accuracy with weighted F1-scores near 0.60. Deep learning 
and transformer models offered no clear advantage, with both LSTM and RemBERT performing 
slightly lower than the classical models, plateauing near 67% accuracy and weighted F1-scores 
around 0.54. These results emphasize that lightweight statistical models remain the most 
reliable in noisy and resource-constrained code-mixed environments, while deep learning and 
transformer architectures require greater adaptation to succeed. 

1. Introduction and Literature Review  
 
1.1 Context and Motivation  

Code-mixing, the blending of two or more languages within a single sentence or phrase, has 
become increasingly common in digital communication, especially on platforms such as 
YouTube, Twitter, and WhatsApp. This phenomenon is particularly prevalent in multilingual 
societies, including India and Sri Lanka, where speakers routinely combine English with regional 
languages such as Tamil [6]. Among Tamil-English bilinguals, a distinct form of code-mixed 
writing has emerged. Often, Tamil is written in Roman script for ease of input, especially on 
mobile devices that default to English keyboards [1], [3]. This style of communication departs 
from conventional monolinguistic structures and often includes creative spellings and phonetic 
approximations. 

This informal and hybrid language style poses unique challenges for natural language 
processing (NLP) systems. Tools designed for monolingual or even multilingual text typically 
assume consistent grammatical structure and standardized spelling [4], [2]. In contrast, 
code-mixed text exhibits unpredictable shifts in language, orthographic variation, and informal 
transliteration practices. These complications are further amplified for low-resource languages 
like Tamil, which lack the extensive annotated corpora and language tools available for widely 
studied languages such as English or Mandarin [5]. 
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1.2 Problem Statement  

Existing sentiment analysis models are largely built on monolingual corpora and assume 
consistent linguistic norms. When applied to code-mixed text, particularly Tamil-English data 
written in Roman script, these models often fail to capture meaning accurately [1]. The root of 
the issue lies in both the linguistic nature of code-mixing and the scarcity of tailored resources. 
Phonetic spelling varies from user to user, and transliteration is not standardized. In addition, 
mixed-language texts often contain elements like emojis, abbreviations, and internet slang, all of 
which contribute to lexical noise [1]. 

While multilingual models have shown promise in recent years, they are not optimized for 
handling inconsistent or informal code-mixing. Their vocabulary coverage may include both 
English and Tamil, but they lack mechanisms to reconcile non-standard forms or understand 
mixed syntax [4]. As a result, the sentiment classification of such text remains unreliable, 
particularly in informal and noisy domains such as social media. 

 

1.3 Objectives​
​
This paper aims to compare modern machine learning models to traditional methods to 
determine which is most adept at handling code-mixed (Tamil-English) inputs. Classical machine 
learning models, deep learning architectures, and transformer-based approaches are all 
evaluated on a curated dataset. In addition, we examine whether lexicon-based sentiment 
scores can meaningfully complement statistical classifiers. The broader objective is to identify 
practical methods for improving sentiment analysis in low-resource, code-mixed language 
settings.​
​
2. Literature Review 
 
2.1 Tamil Sentiment Analysis​
​
Sentiment analysis for Tamil has historically been limited by the lack of large-scale annotated 
resources. Lexicon-based approaches initially dominated, often relying on sentiment mapping 
from English to Tamil via bilingual dictionaries or translation services. Kannan et al. [7] laid early 
groundwork by constructing Tamil SentiWordNet, leveraging English sentiment labels through 
translated glosses and human verification. This lexicon continues to support lexically driven 
pipelines, although it remains sensitive to dialect, context, and domain shifts. 
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More sophisticated pipelines have emerged in recent years. Ramanathan et al. [8] proposed a 
layered sentiment analysis system combining baseline Term Frequency–Inverse Document 
Frequency (TF-IDF), domain-specific ontologies, Contextual Semantic Sentiment Analysis 
(CSSA), and an enhanced Tamil SentiWordNet. This hybrid pipeline achieved 77.9% accuracy 
on Tamil tweets for the film Petta, far outperforming the TF-IDF-only baseline of 34.6%. The 
work underscored the benefits of integrating context-aware semantics and informal language 
expansion into lexicon-driven models. 

Deep learning methods have also shown potential in Tamil sentiment tasks. While such models 
demand large corpora, even relatively shallow neural networks (e.g., single-layer Long 
Short-Term Memory (LSTM) models) have proven effective on short-form text when paired with 
domain-aligned embeddings and careful preprocessing [9]. However, these models still struggle 
with transliterated or noisy inputs. 

 
2.2 Code-mixed Sentiment Analysis​
​
Code-mixing presents an added challenge to traditional sentiment models due to lexical 
inconsistencies, lack of standardized transliteration, and unpredictable grammatical switches. To 
address this, Chakravarthi et al. [1] released a benchmark dataset of Tamil-English code-mixed 
YouTube comments as part of the FIRE-DravidianCodeMix shared task. Their dataset included 
over 4,000 annotated sentences, and their experiments showed that Multilingual Bidirectional 
Encoder Representations from Transformers (mBERT) achieved the highest macro F1-score 
(58.52%) on the Tamil-English subset. This outperformed classical methods like Support Vector 
Machines (SVM) (51.98%) and Bidirectional LSTM (BiLSTM) (53.44%), demonstrating that 
transformer-based models are better suited to capturing context in phonetically spelled, 
mixed-language text. 

Building on the challenge of code-mixed sentiment detection, Raveendirarasa and Amalraj [10] 
proposed a hybrid approach using dictionary-based preprocessing and a subword-level LSTM 
trained on a small curated corpus of 1,500 comments. Their system reached 74.6% accuracy by 
combining manually developed lexicons and Part-of-Speech (POS) tagging with machine 
learning. The authors emphasized the role of structured preprocessing for handling inconsistent 
Romanized Tamil tokens—particularly in settings where training data is limited. 

Ramanathan et al. [8] approached the problem with a more lexicon-heavy perspective, 
incorporating a semantic ontology and enhanced sentiment lexicon. Although their work focused 
on monolingual Tamil tweets, the strategies they employed—such as sentiment inversion based 
on syntactic cues—are also relevant in mixed-language contexts where negation and informal 
grammar often distort surface polarity. 
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2.3 Multilingual Transformers and Code-Mixed Pretraining​
​
While early multilingual models like mBERT showed improvements over classical baselines, 
more recent transformer architectures have significantly advanced code-mixed sentiment 
detection. Krasitskii et al. [11] conducted a comprehensive comparison of models including 
RemBERT, IndicBERT, mT5, and XLM-RoBERTa. Their results highlighted RemBERT as the 
most effective model for Tamil-English code-mixed data, achieving 87.5% accuracy and an 
F1-score of 86.4%. The evaluation was conducted over several datasets, including CMD-Tamil 
and DravidianCodeMix, using both BLEU scores and standard sentiment metrics. Their findings 
emphasize that multilingual pretraining is not sufficient alone; robustness to transliteration and 
subword variation is critical. 

These results build on findings from shared tasks such as DravidianCodeMix, which showed 
that code-mixed pretraining or fine-tuning on noisy, mixed-language corpora consistently 
improves sentiment model performance [12]. General-purpose multilingual models 
underperform when not adapted to the linguistic quirks of code-mixed data, especially 
Romanized input with inconsistent spelling and syntax. 

 
2.4 Hybrid and Preprocessing Approaches​
​
Across studies, preprocessing emerges as a pivotal stage for success. Common strategies 
include transliteration to native script, normalization of phonetic variants, and filtering of 
non-textual noise. In several cases, sentiment performance improved significantly when models 
were fed cleaned and language-aligned input [1], [10]. Ramanathan et al. [8] and Krasitskii et al. 
[11] both integrated domain-specific sentiment lexicons into their models, showing that even 
transformer-based architectures benefit from explicit lexical priors in code-mixed settings. 

Hybrid systems, such as lexicon-enhanced XGBoost pipelines, demonstrate how linguistic 
knowledge and statistical modeling can complement each other. For example, incorporating 
VADER scores or Tamil SentiWordNet features into TF-IDF-based models allows machine 
learning systems to make better use of prior sentiment cues. While this technique has yet to 
outperform the latest transformers, it provides more interpretable and lightweight alternatives, 
particularly in resource-constrained or low-latency applications. 

 
3. Methods and Data  
 
3.1 Dataset  
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The primary dataset used in this paper is the FIRE-DravidianCodeMix 2020 Tamil-English 
Sentiment Analysis Dataset [1], which contains code-mixed YouTube comments collected from 
South Indian channels. The Tamil-English portion of the dataset includes over 4,000 examples, 
each manually labeled into one of five sentiment categories: positive, negative, neutral, mixed 
sentiment, and other-language. For the purposes of this paper, only the positive, negative, and 
neutral labels were retained, resulting in a simplified three-class classification problem. This 
format was supported by the datasets used and matches with previous experiments, allowing for 
smoother testing and consistency.  
 
All comments in the dataset are written in Roman script or were transliterated from Tamil script 
to Roman script. This reflects how users typically input Tamil text using English keyboards, often 
resulting in informal spellings, inconsistent transliteration, and ungrammatical structures. Many 
comments switch between Tamil and English words unpredictably and exhibit features typical of 
social media text, including emojis, abbreviations, repeated characters, and slang.  

To support the lexicon-based component of the analysis, a modified version of the 
VADER sentiment lexicon was constructed. Google Translate was used to add Tamil words to 
the dataset, allowing for code-mixed processing.   
 
3.2 Preprocessing Pipeline  
 
To ensure consistency and usability across modeling stages, a structured preprocessing 
pipeline was applied to the dataset. The raw data, comprising Tamil-English code-mixed 
comments annotated with sentiment labels, was initially sourced from tab-separated value 
(TSV) files. Preliminary cleaning involved the removal of metadata fields not required for training 
and the normalization of label strings to eliminate leading or trailing whitespace. The training 
and test partitions were merged to apply uniform preprocessing procedures. Sentiment labels 
were converted from categorical to numerical format using ordinal label encoding techniques, 
facilitating compatibility with supervised learning algorithms. Following this, the data was 
stratified and split into training, validation, and test sets using a 70-10-20 ratio with stratification 
to preserve the original class distribution across splits. To support reproducibility and simplify 
downstream experimentation, the resulting subsets were saved as TSV files in a shared 
directory. These preprocessed files were subsequently reloaded for use in both classical and 
deep learning model pipelines. This preprocessing strategy ensured that the input data was 
clean, standardized, and readily reusable across all modeling experiments. 
 
3.3 Models  
 
 

Type Model 
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Lexicon-Based VADER (lexicon-based) 

Classical Machine Learning Naive Bayes 

Classical Machine Learning Logistic Regression 

Classical Machine Learning Support Vector Machine 

Machine Learning XGBoost 

Deep Learning Model LSTM 

Transformer-Based Model RemBERT + MLP 

Hybrid Model VADER + XGBoost 

Hybrid Model VADER + Bayes 

Table 1: Classifications of tested approaches 

 ​
3.3.1 Lexicon-Based Model​
​
The baseline lexicon model was built using VADER, a rule-based sentiment analyzer designed 
for social media text. VADER calculates sentiment polarity based on word intensity scores and 
syntactic cues such as negation and punctuation. The original English lexicon was expanded 
with transliterated Tamil sentiment words commonly found in the training data. The model 
computed a compound sentiment score for each comment based on the scores given to each 
word, and a rule-based mapping converted the score into a discrete sentiment class. 

Although VADER does not model context beyond token-level cues, it provides a transparent 
baseline for evaluating the impact of lexicon augmentation and preprocessing.​
​
3.3.2 Classical Machine Learning Models 

Three classical machine learning models were tested using TF-IDF representations of the 
preprocessed text: Multinomial Naive Bayes, Logistic Regression, and Support Vector 
Machines. These models were trained using scikit-learn and evaluated using stratified three-fold 
cross-validation. Feature extraction included unigrams, bigrams, and trigrams, with token 
frequency thresholds set to ignore rare words. Different models used different ngrams based on 
which were more optimal. 
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The purpose of these models was to establish baseline performance for shallow learning 
techniques. They require minimal resources and are relatively robust to small datasets, but lack 
the ability to model long-range dependencies or subword variation. 

3.3.3 Deep Learning Models 

A Long Short-Term Memory (LSTM) network was implemented to capture sequential patterns in 
the comments. This model uses text tokenization and padding, an embedding layer, two LSTM 
layers, and dropout layers, compiled with an Adam optimizer and trained with early stopping. 

Training was conducted using categorical cross-entropy loss with early stopping based on 
validation accuracy. The LSTM model was selected for its effectiveness in handling 
variable-length input and informal text, characteristics that define code-mixed data. 

3.3.4 Transformer-Based Models 

To evaluate the potential of multilingual pretrained transformers, RemBERT with MLP was 
chosen. This model was chosen based on previous findings indicating its strong performance on 
South Asian code-mixed text [11]. 

Tokenization was handled using each model's native tokenizer, which allowed subword 
segmentation of phonetic variations and hybrid word forms. Each model was trained using the 
HuggingFace Transformers library with a learning rate schedule and early stopping. Inputs were 
limited to 128 tokens to match the dataset's average length and reduce memory load.  

This model uses a pre-trained tokenizer and model with a fixed sequence length, and was tuned 
on learning rate, number of epochs, and batch size. 

3.3.5 Hybrid Model 

Finally, two hybrid approaches were tested by combining the lexicon-based VADER-derived 
sentiment scores with TF-IDF features, fed into an XGBoost classifier. This model utilizes 
TF-IDF features with a variable number of max features, and an XGBoost classifier tuned on the 
number of estimators, learning rate, and maximum depth. 

Additionally, the TF-IDF features and the sentiment scores were also fed into a Naive Bayes 
model. This model uses a variable number of max features and ngram ranges, and a 
Multinomial Naive Bayes classifier tuned on the smoothing parameter. The goal was to integrate 
rule-based sentiment priors into a statistical model capable of learning discriminative patterns. 
This combination allowed the model to benefit from both symbolic sentiment cues and 
contextual token-level representations. 
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The inclusion of lexicon features as an additional dimension was intended to improve 
robustness on sparse or noisy examples, particularly those dominated by informal Tamil 
sentiment terms not well represented in pretrained embeddings. 

4. Results and Conclusions 

4.1 Results 

Model Accuracy % Weighted F1 Precision Recall 

VADER 
(lexicon-based) 

64.24 0.343    0.526       0.280 

Naive Bayes 69.16 0.602 0.634 0.692 

Logistic 
Regression 

69.36 0.611 0.640 0.694 

Support Vector 
Machine 

69.32 0.600 0.634 0.693 

XGBoost 68.24 0.577 0.617 0.682 

LSTM 67.07 0.540 0.450 0.671 

RemBERT + 
MLP 

67.07 0.538 0.450 0.672 

VADER + 
XGBoost 

68.88 0.603 0.614 0.689 

VADER + Bayes 68.40 0.575 0.632 0.684 

Table 2: Summary of performance metrics for approaches tested 

The evaluation showed that classical machine learning models provided the most stable 
performance on the FIRE-DravidianCodeMix 2020 Tamil-English dataset. Logistic Regression, 
Naive Bayes, and SVM all achieved test accuracies close to 69%, with weighted F1-scores 
around 0.60–0.61. XGBoost performed slightly below these baselines, reaching 68.2% accuracy 
and a weighted F1-score of 0.57. Hybrid approaches that integrated VADER lexicon features 
into statistical classifiers have similar results. VADER + XGBoost reached 68.9% accuracy and 
a weighted F1-score of 0.60, comparable to the best-performing classical models, while VADER 
+ Naive Bayes performed slightly lower at 68.4% accuracy and 0.58 weighted F1. Deep learning 
approaches were less consistent: the LSTM attained a comparable accuracy of 67.1% but 
almost exclusively predicted the majority “positive” class, resulting in very low macro-level 
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performance. Similarly, RemBERT, despite being identified in prior work as one of the strongest 
models for Tamil-English code-mixed text, only reached 67.1% accuracy and a weighted 
F1-score of 0.54. The lexicon-based VADER baseline, expanded with transliterated Tamil 
entries, produced lower overall performance compared to the statistical models, with an 
expected accuracy in the 55–60% range and weighted F1 below 0.50 (placeholder — to be 
updated once tested). 

While there was no substantial variation between most of the models, all of them outperformed 
the lexicon-based baseline. These findings highlight that while transformer-based and deep 
learning models have shown superior performance on larger or better-curated code-mixed 
corpora (e.g., CMD-Tamil, DravidianCodeMix), their advantage diminishes on smaller, noisier 
datasets such as FIRE2020, perhaps due to their complex nature and immense parameters to 
train and generalize. In contrast, lightweight classical models—and to a slightly lesser extent, 
hybrid approaches—displayed higher precision, recall, and f1 scores, remaining robust and 
competitive in resource-constrained conditions.  

4.2 Conclusion 
 
This paper shows that sentiment analysis for Tamil-English code-mixed text depends as much 
on dataset characteristics as on model architecture. Classical machine learning models such as 
Logistic Regression, Naive Bayes, and SVM proved most effective on the 
FIRE-DravidianCodeMix 2020 dataset, achieving around 69% accuracy with stable weighted 
F1-scores. Their strength lies in handling smaller, noisier, and more imbalanced data without 
requiring extensive preprocessing. In particular, probabilistic and linear models may remain 
advantageous because they make relatively few assumptions about linguistic regularity, allowing 
them to capture broad statistical trends even when the signal is sparse or inconsistent. The 
hybrid approaches tested show that lexicons can provide some support to these traditional 
methods, but despite the prominence of deep learning, classical approaches continue to offer 
practical benefits in low-resource and noisy environments. 

In contrast, larger transformer-based models like RemBERT, which have demonstrated 
strong results on curated corpora, where Krasitskii et al. [11] reported F1-scores near 87%, 
seemed to struggle to generalize under FIRE2020’s noisier conditions, achieving only ~67% 
accuracy and F1 ~0.54. This contrast underscores that while transformers excel when trained 
on large, balanced, and carefully managed datasets, classical models seem more reliable for 
resource-constrained and noisy settings. Our results align more closely with the incremental 
improvements observed by Chakravarthi et al. [1], rather than the dramatic gains claimed by 
Krasitskii et al., reinforcing the importance of evaluating models across diverse datasets. At the 
same time, excessive normalization and cleaning, such as aggressive spelling correction or 
transliteration alignment, risk producing artificially simplified data that does not reflect real-world 
language use, as well as significant inflation of model performance on data.  
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4.3 Limitations 
 

Several limitations shaped the outcomes of this paper. First, reliance on Google Translate 
for producing romanized Tamil introduced inconsistencies, as automated transliteration often 
fails to capture phonetic nuances and colloquial variations present in code-mixed social media 
text. Similarly, spelling variations and informal script-switching were not always consistently 
handled, which likely contributed to misclassifications. In addition, while hyperparameter tuning 
improved model performance, results may still reflect local optima rather than the true best 
possible configurations, meaning additional search could yield further gains. These issues 
highlight the challenges of working with inherently noisy, under-resourced code-mixed datasets, 
where preprocessing choices can significantly shape model performance. 

 
4.4 Future Work 
 
​ Building on these findings, future research should aim to balance preprocessing with 
model robustness, avoiding excessive normalization while still addressing key noise sources. 
Promising directions include domain-adaptive pretraining of transformers on social 
media-specific Tamil-English corpora, which could help bridge the gap between curated 
benchmarks and real-world conditions. Hybrid approaches that combine lexical and contextual 
modeling, such as integrating TF-IDF features with transformer embeddings, may also yield 
improvements by leveraging the complementary strengths of probabilistic and neural methods. 
Beyond technical modeling, developing standardized transliteration schemes and expanding 
annotated datasets for code-mixed Tamil-English would reduce inconsistencies and enable 
more reliable benchmarking. Additionally, more data would allow for the development of more 
complex deep learning models and neural networks. Together, these efforts would advance the 
development of sentiment analysis systems that generalize effectively across diverse and noisy 
code-mixed contexts. 
 

 

10 



References 

[1] Chakravarthi B, Muralidaran V, Priyadharshini R, and McCrae JP, Corpus creation for 

sentiment analysis in code-mixed Tamil-English text, arXiv preprint arXiv:2006.00206, 2020. 

doi:10.48550/arXiv.2006.00206. 

[2] Aguilar G, Kar S, Solorio T, and González FA, LinCE: A centralized benchmark for linguistic 

code-switching evaluation, Proc. 12th Language Resources and Evaluation Conf. (LREC), pp. 

1803–1813, 2020. [Online]. Available: https://aclanthology.org/2020.lrec-1.223/ 

[3] Sridhar SN, Code-mixing in Indian languages: Typological and sociolinguistic aspects, in 

Handbook of the South Asian Languages, Karduna H, Malchukov A, Subbarao P, Eds. Cham: 

Springer, 2020, pp. 359–387. doi:10.1007/978-3-030-46010-3_13. 

[4] Solorio T, Blair E, Maharjan L, Bethard S, Diab A, Choudhury M, Bali K, Das M, and 

AlGhamdi D, Overview for the first shared task on language identification in code-switched data, 

Proc. 1st Workshop on Computational Approaches to Code Switching, pp. 62–72, 2014. 

[Online]. Available: https://aclanthology.org/W14-3913/ 

[5] Bhat RA, Choudhury M, Malu A, and Bali K, Universal dependency parsing for Hindi-English 

code-switching, Proc. Conf. North American Chapter of the Association for Computational 

Linguistics: Human Language Technologies (NAACL-HLT), pp. 987–998, 2018. [Online]. 

Available: https://aclanthology.org/N18-1090/ 

[6] Pratapa A, Bhat RA, Choudhury M, and Bali K, Language modeling for code-mixing: The role 

of linguistic theory based synthetic data, Proc. 56th Annu. Meeting of the Association for 

Computational Linguistics (ACL), pp. 1543–1553, 2018. doi:10.18653/v1/P18-1143. 

11 

https://aclanthology.org/2020.lrec-1.223/
https://aclanthology.org/W14-3913/
https://aclanthology.org/N18-1090/


[7] Kannan A, Mohanty F, and Mamidi R, Towards building a SentiWordNet for Tamil, Proc. 13th 

Int. Conf. on Natural Language Processing (ICON), NLP Association of India, 2016. [Online]. 

Available: https://aclanthology.org/W16-6305/ 

[8] Ramanathan V, Thirunavukkarasu M, and Thamarai S, Sentiment analysis: An approach for 

analysing Tamil movie reviews using Tamil tweets, in Research Advances in Modern Science, 

vol. 3, pp. 44–55. Book Publisher International, 2021. doi:10.9734/bpi/ramrcs/v3/4845F. 

[9] Padmamala R, Prema VM, Sentiment analysis of online Tamil contents using recursive 

neural network models approach for Tamil language. In: 2017 IEEE International Conference on 

Smart Technologies and Management for Computing, Communication, Controls, Energy and 

Materials (ICSTM); 2017 Aug; p. 28–31. doi:10.1109/ICSTM.2017.8089122. 

[10] Raveendirarasa V and Amalraj CRJ, Sentiment analysis of Tamil-English code-switched 

text on social media using sub-word level LSTM, Proc. 5th Int. Conf. Information Technology 

Research (ICITR), pp. 1–5, 2020. doi:10.1109/ICITR51448.2020.9310817. 

[11] Krasitskii M, Kolesnikova O, Chanona Hernandez L, Sidorov G, and Gelbukh A, Advancing 

sentiment analysis in Tamil-English code-mixed texts: Challenges and transformer-based 

solutions, Proc. 5th Int. Conf. on Natural Language Processing for Digital Humanities 

(NLP4DH), pp. 305–312, 2025. [Online]. Available: https://aclanthology.org/2025.nlp4dh-1.27 

[12] Chakravarthi BR, Priyadharshini R, Thavareesan S, Chinnappa D, Thenmozhi D, Sherly E, 

et al. Findings of the Sentiment Analysis of Dravidian Languages in Code-Mixed Text. FIRE / 

Dravidian-CodeMix Shared Task Report; 2021. Available from: https://arxiv.org/abs/2111.09811 

(accessed on 2025-10-12). 

12 

https://aclanthology.org/W16-6305/
https://aclanthology.org/2025.nlp4dh-1.27

	3.3.3 Deep Learning Models 
	3.3.4 Transformer-Based Models 
	3.3.5 Hybrid Model 

