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 Abstract 
 Dark matter is a core component of the Universe, allowing for the evolution of structure. 

 Although the nature of dark matter is largely unknown because it does not interact with light, a 
 wide range of observational evidence backs up its existence. This includes evidence from 
 galaxy rotational curves, gravitational lensing, the Bullet Cluster, and the Cosmic Microwave 
 Background (CMB). This review examines the role of dark matter in galaxy formation within the 
 scope of the standard model of cosmology. Discussion for the particle candidates of dark matter, 
 like axions, Weakly Interacting Massive Particles (WIMPs), and Massive Astrophysical Compact 
 Halo Objects (MACHOs) are also included. The many proofs of dark matter, growth from 
 primordial heat fluctuations, and the evolution of galaxies are outlined too. Further attention is 
 given to the nature of galaxy evolution by discussing differences between early and late-type 
 galaxies, in respect to metallicity and telescope observations. The paper concludes future 
 prospects of understanding dark matter and its connection to galaxy formation. 

 1. Introduction 
 Recent observations across cosmology and astrophysics continue to refine theories and 

 understanding of dark matter and its role in structure formation. Not only does dark matter not 
 absorb or reflect light, it is almost impossible to detect electromagnetically. The Standard Model 
 of Cosmology, specifically the Lambda CDM model, indicates that dark matter makes up 95% of 
 all matter, forming an invisible scaffold for the growth of structure. Evidence exists from galaxy 
 rotation curves, gravitation lensing, the CMB, etc., but astronomers still cannot describe dark 
 matter’s quantum nature, i.e., as a particle. Some popular but now debunked or semi-debunked 
 candidates are MACHOs and WIMPs (see Section 2) while current theories indicate that dark 
 matter might be ultra-light instead of massive and be an axion particle or axion-like [1]. This 
 paper provides a comprehensive overview of dark matter and galaxy formation. 

 In the following, the Lambda CDM is briefly presented in Section 2. Section 3 details the 
 various sources of  observational evidence for dark matter through several methods. Section 4, 
 describes the nature of galaxy formation and evolution as well as differences between early and 
 late type galaxies. Finally, Section 5 concludes with future forward thoughts on pinning down 
 dark matter’s mystery. 

 2. Lambda CDM 
 Cosmology is a subfield of astrophysics that deals with the universe at a very large scale. 

 From the birth of the cosmos to its possible end, cosmology asks some of the most profound 
 questions in science:  What physical forces drove the rapid expansion of the early Universe? 
 What is the nature of dark matter and dark energy? Why do astronomers observe 
 discrepancies, such as the Hubble tension, between measurements in the Hubble constant from 
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 the early Universe and the present-day Universe?  The current understanding of how the 
 Universe came to be is part of the Standard Model of Cosmology, specifically described to-date 
 Lambda CDM (ΛCDM). Within this model, Lambda is known as a cosmological constant. It 
 stands for dark energy, or the mysterious energy that is responsible for the expansion of the 
 Universe. CDM stands for cold dark matter [2]. “Cold” refers to the matter’s particles moving 
 relatively slower than photons (i.e., non-relativistically), whereas "dark” refers to how this type of 
 matter weakly interacts with baryonic matter, or normal matter [3]. According to Lambda CDM, 
 the universe is composed of 27% dark matter, 68% dark energy, and the rest being ordinary 
 matter [4]. 

 There are several particle candidates for dark matter. Weakly Interacting Massive 
 Particles (WIMPs) are hypothetical particles that are massive and would only interact via gravity 
 or another small force and were a leading candidate; they were hard to detect and other 
 candidates are now gaining traction [2]. MAssive Compact Halo Objects (MACHOs) state that 
 dark matter is mostly baryonic, but the candidate falls short because it is hard to imagine how 
 dark matter forms with this framework. However, axions, a light particle that could be classified 
 as cold matter, is a good candidate for dark matter and explains parts of the Lambda CDM [1]. 

 The Lambda CDM states that the universe formed from a single point. A simplified 
 timeline of the early universe according to the LambdaCDM model begins with the inflationary 
 epoch, around 10⁻³⁶ seconds after its birth [5]. In the first fractions of a second, space expanded 
 exponentially, setting the initial conditions for the cosmos one can observe today. One second 
 later, the universe was an 18 billion degrees Fahrenheit (10 billion degrees Kelvin) primordial 
 soup of light and particles [6]. In the next few minutes, as the temperature dropped to around 1 
 billion Kelvin (1.8 billion°F), protons and neutrons collided and created early elements like 
 hydrogen and helium, and traces of lithium and beryllium [7], known as Big Bang 
 Nucleosynthesis. After five minutes, most of the Universe's helium supply formed. The Universe 
 expanded and cooled until element formation stopped. However, at this point, the Universe was 
 still too hot for the nuclei of these atoms and elements to catch electrons [7]. 

 The inflationary event  is thought to have occurred approximately between 10  -36  and 10  -32 

 seconds after the birth of the Universe, during which the Universe grew by a factor of at least 
 10  26  in size [8]. The theory of inflation is widely accepted, but it still requires observational 
 confirmation that such an inflationary event actually occurred, primarily through measurements 
 of the cosmic microwave background (CMB), the oldest observable light in the Universe. 
 Inflationary theories predict that quantum fluctuations in the early Universe were stretched to 
 cosmic scales, eventually seeding the large-scale structure one can observe today. If inflation 
 occurred, evidence for it could appear as a characteristic polarization signal in the CMB. 

 Theories of inflations state that quantum fluctuation from the singularity in the early 
 universe became exacerbated into the large scale structures (galaxies, galaxy clusters) 
 scientists see today as a result of a rapid exponential expansion. About 380,000 years after the 
 birth of the Universe, it had cooled enough for atomic nuclei to capture free electrons in a 
 process known as recombination, forming neutral hydrogen gas [9].  Since most electrons were 
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 now bound to nuclei, photons were no longer frequently scattered and were able to travel freely 
 through space for the first time. This release of radiation revealed what is now known as the 
 observable Universe. The remnant glow from this epoch is still detectable today and is called 
 the Cosmic Microwave Background (CMB) [7]. 

 Much of modern cosmology relies on observations of the CMB to study the physics of the 
 Universe at its earliest moments and highest energies. These measurements allow scientists to 
 trace the distribution of matter—including dark matter—across space and time. Probing the 
 CMB also helps identify tensions within the ΛCDM model and provides insight into the nature of 
 dark matter, dark energy, and perhaps even the  quantum nature of gravity. For the purposes of 
 this work, this paper will specifically focus on how the CMB provides insight into dark matter’s 
 presence and influence in the early Universe, as well as its impact on the Universe today (see 
 Section 3.4 for more detail). 

 2.1 Evolution of Structure 
 After the CMB was released, the universe became  transparent  , allowing photons to travel 

 freely through space. For the next several hundred million years, the universe consisted 
 primarily of hydrogen and helium, with only trace amounts of heavier elements [7]. Although the 
 universe was remarkably uniform overall, small density fluctuations were present, with some 
 regions containing slightly more matter than others. 

 In regions where the density was higher, gravity caused gas to clump together over time, 
 attracting more matter and growing increasingly dense. As these clumps collapsed under their 
 own gravity, their centers became hot and dense enough to initiate nuclear fusion, leading to the 
 formation of the first stars. The birth and death of these early stars produced heavier elements, 
 which were then dispersed into the surrounding gas. This enrichment enabled the formation of 
 subsequent generations of stars. Over hundreds of millions of years, stars and gas assembled 
 into the first galaxies [10]. 

 3. Observational Evidence for Dark Matter 
 3.1 Galaxy Rotation Curves 

 According to Kepler’s Third Law, an object farther away from a central mass orbits that 
 mass slower [11]. This phenomenon can be seen in the solar system where planets like Mercury 
 and Venus spin faster around the sun than Saturn and Uranus. However, in galaxies, something 
 strange happens. Scientists derive properties of galaxies by measuring what objects in galaxies 
 are doing. When exploring these properties, scientists observed that objects were going faster 
 than expected, in proportion to their distance [12]. Specifically, when recording light from distant 
 spiral galaxies and plotting the velocity of their stars and their distances from the center of the 
 galaxies, the velocities were greater than expected [13].This implies that there is extra mass 
 unaccounted for (not observed visibly) in the galaxy that would cause stellar objects to travel 
 faster than expected. This extra mass is often thought to be dark matter. 
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 Figure 1.  Graph showing the distance from a galaxy center versus the velocity of stars. Curve 
 ‘A’ represents the velocities that are seen in galaxies through observation. Curve ‘B’ represents 
 the expected velocities of stars based on visible matter and Kepler’s third law (modified from 
 original image by PhilHibbs and licensed under CC BY-SA 3.0 [14]). 

 3.2 Gravitational Lensing 
 Gravitational lensing is a consequence of general relativity. It occurs when a massive 

 celestial body, such as a galaxy, bends the path of light from a more distant entity because of its 
 strong gravitational field [15]. The big object between the observer and the light source acts as a 
 lens, meaning that lensing requires mass; the bigger the mass, the larger the lensing. Hence, 
 gravitational lensing can be used to find the mass of large objects, like a galaxy [16]. However, 
 when using lensing, the bending of light is much stronger than accounted for by visible matter 
 alone, suggesting additional unseen matter–or dark matter [13]. 
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 Figure 2.  Large galaxy clusters contain both dark and regular matter. The gravity of these 
 clusters is so large that the space around the galaxy bends. The distortion causes light from far 
 away to be magnified, hence the name gravitational lensing. This sketch shows the path of light 
 as it bends from a distant galaxy to a telescope (Image from NASA, ESA [17]). 

 Dark matter is measured through strong and weak lensing. Strong lensing is when 
 gravitational lensing produces highly distorted images with multiple images or rings [16]. This 
 allows for an accurate way to measure how mass is within a galaxy. However, weak lensing only 
 causes slight distortions and warps. Scientists use this to make 3D maps of the distribution of 
 dark matter by finding the distortions on many background galaxies [18]. 
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 Figure 3.  Shows strong gravitational lensing. The image is titled “Hubble Sees A Smiling Face” 
 because of the two large orange eyes and smile. The smile lines are actually arcs distorted by 
 gravitational lensing (Image from NASA, ESA [19]). 

 3.3 Bullet Cluster 
 The Bullet Cluster was formed after the collision of two large galaxy clusters and is 

 named after its bullet-like shape. This cluster plays a huge part in proving the existence of dark 
 matter because of its center of mass. If gravitational lensing is used to find the center mass, the 
 center appears in a different location than when observing [20]. This is because during the 
 collision of the two other galaxies, hot gas was slowed by a drag force. However, dark matter 
 was not slowed because it does not interact with gas or itself. Therefore, during the collision, 
 dark matter passed through and caused a separation between the two types of matter [21]. If 
 other theories of gravity were true, hot mass should have been the largest component. However, 
 this effect would not have been seen, indicating the existence of dark matter [22]. 
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 Figure 4.  This image shows the galaxy cluster, known as the “bullet cluster.” Formed after the 
 collision of two large galaxies, its bullet-like shape sparked the name. The two large pink clumps 
 are mostly normal matter, while the blue parts show the location of most of the mass in the 
 cluster, through gravitational lensing. Most matter in the clusters is separated from the normal 
 matter, giving evidence that most matter in this cluster is dark matter (Image from Chandra 
 X-ray Observatory ACIS. Credit; X-ray: NASA/CXC/CfA/M.Markevitch et al.; Lensing Map: 
 NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.; Optical: NASA/STScI; 
 Magellan/U.Arizona/D.Clowe et al. [20]). 

 3.4 The Cosmic Microwave Background (CMB) 
 As mentioned before, the CMB holds information about the early Universe. To see the 

 CMB more clearly and its temperature fluctuations, scientists use a statistical representation 
 called an angular power spectrum. It is measured in angular metric, meaning it measures the 
 separation between points as they appear to us in the sky [23]. In Figure 4, moving along the 
 x-axis corresponds to looking at smaller angular scales in the CMB. As the angular separation 
 decreases, finer details in the temperature fluctuations become visible, meaning the resolution 
 of smaller regions of the CMB increases. Similarly, the y-axis measures the variance of 
 temperature fluctuations or anisotropies. Each peak on the graph tells us something about the 
 Universe [23]. The position of the first peak on the x-axis tells us the geometry of the Universe 
 (flat). The relative heights of the second and third peaks reveal the amounts of normal 
 (baryonic) matter and dark matter, respectively, allowing cosmologists to determine the total 
 matter content of the universe, and the contribution from dark matter [24]. 

 Moreover, when early CMB data began to clearly reveal the second and third peaks, 
 scientists compared these observations to different theoretical scenarios for what the Universe 
 could be made of. Normal (baryonic) matter interacts with radiation, which affects how strongly 
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 the peaks appear in the power spectrum. If baryonic matter were the dominant form of matter in 
 the Universe, it would significantly enhance some peaks while suppressing others, leading to a 
 more uneven pattern between the second and third peaks. 

 However, observations showed that the second and third peaks are very similar in height. 
 This indicates that normal matter alone cannot account for the observed structure of the CMB. 
 Instead, the presence of dark matter— which does not interact with light but still contributes 
 gravitationally—helps explain why higher-order peaks remain strong. This pattern suggests that 
 dark matter makes up most of the matter in the Universe. By comparing the full CMB power 
 spectrum to cosmological models, scientists found that ordinary matter makes up only about 5% 
 of the Universe, with the rest consisting of dark matter and dark energy [4]. 

 Figure 5.  Planck measurements of the CMB temperature power spectrum. It provides some 
 fundamental properties of the universe. The 1st peak tells us about the geometry of the universe 
 while the 2nd and 3rd peaks tell us about dark matter distribution in the universe. Because the 
 3rd peak is only 5% higher than the 2nd peak, it can be concluded that the universe is made up 
 of 95% dark matter. (Image from ESA and the Planck Collaboration [25]). 

 3.5 Structure Formation 
 During the early Universe, everything was extremely hot. Another way to think of the 

 power spectrum is as a collection of pressure waves that compress and rarify. What this means 
 is, photons constantly scattered off free elections and nuclei, creating an outward force 
 (radiation) which resisted gravitational collapse and pushed particles apart [26]. However, a key 
 thing to note is that only ordinary matter is affected by radiation, not dark matter. Since gravity 
 tried to pull matter inward while radiation pressure pushed outward, there was a pattern of 
 compressions and rarefactions of sound waves moving through the hot plasma of photons and 
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 baryons [27]. The first peak of these oscillations showcased in the CMB power spectrum 
 represents compression, while the second corresponds to rarefaction, which is always smaller 
 because radiation resists collapse. The third peak, however, reveals the presence of dark 
 matter; unlike ordinary matter, dark matter does not feel radiation pressure [28]. It only responds 
 to gravity, deepening gravitational wells and allowing matter to continue clumping together. 
 Without dark matter, the third peak would be much smaller, and large-scale structures like 
 galaxies and clusters would never have formed. 

 Figure 6.  Three-dimensional visualization of the cosmic web through a large-scale simulation. 
 The model shows the network of matter where the blue structures trace the distribution of dark 
 matter. The redder areas indicate gravitational potential wells where baryonic matter 
 accumulates to form galaxies. The presence of these large scale filaments provide evidence for 
 dark matter as the universe could not have grown as rapidly as it did without it. (Image from 
 International Gemini Observatory/NOIRLab/NSF/AURA/G. L. Bryan/M. L. Norman [29]). 

 4. Galaxy Formation 
 After clusters formed in the early universe, they were merged together because of gravity. 

 Once these clumps amassed enough matter, they became what are known as galaxies and 
 galaxy clusters today. 

 4.1 Stellar Formation 
 Star formation starts from collapsed gas clouds that heat up enough to make the first 

 stars, or protostars. After millions of years, the gravitational pressure in these protostars raised 
 central temperatures above 10⁷ K [30] and caused the hydrogen in the star’s nucleus to fuse 
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 together and form helium. This act of nuclear fusion released energy for these initial stars and 
 prevented gravity from collapsing them [31]. The balance between this inward gravitational 
 pressure and the external radiation pressure is known as the hydrostatic equilibrium; it keeps a 
 star stable and from exploding [32]. 

 A star’s mass determines its position on the Hertzsprung–Russell (HR) diagram (see 
 Figure 7), which plots the star’s temperatures against their luminosity [33]. Lower mass stars 
 range from 8-80% of the sun’s mass and far outnumber any other type of star by having a large 
 lifespan [34]. Higher mass stars are usually 8 to 20 M☉(solar masses) and burn faster, die 
 younger, and usually produce supernovae [35]. To give reference, masses of stars are 
 measured in solar masses; a comparison with the sun (1.9891x10  30  kg) [36]. 

 Figure 7.  The Hertzsprung–Russell or HR diagram plots the surface tension of stars against 
 their respective luminosities. The star’s position on the graph indicates the age and mass of the 
 star. The diagonal band from the top, left corner to the lower, right corner represent stars that 
 fuse hydrogen in their cores. Stars that are hot and bright are at the upper-left corner and are 
 pictured as blue; cooler stars are at the bottom-right corner and are red in color. (Image from 
 ESO [37]). 

 As nuclear fusion continues, heavier elements and metals like carbon, oxygen, and iron 
 form [38]. These short lived stars enabled future generations of stars to be born through heavier 
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 elements like Population II and I stars, enabling more efficient cooling for subsequent 
 generations. 

 When a star's mass exceeds what is known as the Chandrasekhar limit, which is around 
 1.44 times the mass of the sun, the degeneracy pressure of an electron can no longer support 
 the star. This means that a star exceeding the limit, once it reaches its end, will become either a 
 neutron star or black hole [39]. A star needs to be greater than 20 solar masses in order to 
 become a black hole [40]. As more stars formed and enriched their surroundings, galaxies took 
 part around supermassive black holes. 

 4.2 Black Holes 
 Inside most big galaxies, there is a supermassive black hole [41]. Within the Milky Way, 

 there is a supermassive black hole (Sagittarius A*) that is 4 million times the mass of the sun 
 [42]. These central black holes likely formed during early galaxy formation from either the 
 collapse of large gas clouds or the merging of smaller black holes created by the first stars in 
 the universe, also known as Population III stars [43]. 

 The formation of supermassive black holes is tightly linked to star formation and their 
 host galaxies. As gas collapses toward a galactic center, it feeds both the black hole and 
 triggers intense star formation, creating a feedback cycle that regulates galaxy growth [40]. 
 Moreover, most galaxy bulges are proportional to the masses of their corresponding black holes, 
 establishing the interconnectedness that are seen in most galaxies today [44]. 

 4.3 Early and Late Galaxies 
 Galaxies have evolved since the formation in the early universe, from smaller irregular galaxies 
 to the wide range of types that are seen today. Observations from the James Webb Telescope 
 and the Hubble Space Telescope have begun to reveal properties of the first galaxies. By 
 analyzing the infrared images of the JWST, scientists can tell that more ovular and tube shaped 
 galaxies might have been common when the Universe was between 600 million and 6 billion 
 years old [45]. 
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 Figure 8.  Examples of galaxy morphologies. The top row shows highly elongated galaxies, and 
 the bottom row displays disk-like and spherical systems. These images captured by the James 
 Webb telescope are estimated to have existed when the universe was around 600 million to 6 
 billion years old. (Image from NASA, ESA, CSA, STScI, Steve Finkelstein (UT Austin), Micaela 
 Bagley (UT Austin), Rebecca Larson (UT Austin) [45]). 

 In today's galaxies, most are spiral, making up 77% of all galaxies, but others could be 
 elliptical, barred spiral, or irregular [46]. They include three components; a disk (spiral arms), 
 bulge, and a halo. Many galaxies, like the Milky Way, are barred spirals, meaning they include a 
 bar with matter flowing through. Elliptical galaxies are ovular while irregular galaxies have no 
 specific size or shape [47]. Older galaxies tend to be more irregular because of the environment 
 in which they were formed. 

 It is claimed that early galaxies formed rapidly when the universe was just 2 billion years 
 old. They were populated with elderly, red stars, indicating that they went through quick star 
 formation [48]. They are often located in denser regions of the universe, which allows them to 
 acquire mass more rapidly than typical galaxies [48]. These denser regions are called 
 gravitational wells and are held together by dark matter. In contrast late galaxies tend to be late 
 bloomers, meaning they accumulate gas and merge over millions of years [49]. Overall, 
 differences lie in timing and the environment in which early and late galaxies matured. 

 There are also several key differences between the metallicity of early and late galaxies. 
 Metallicity refers to the amount of elements heavier than Hydrogen and Helium in a galaxy [50]. 
 Early galaxies, or those housing Population III stars are theorized to be very low in metal 
 content [51]. These galaxies were very massive and extremely hot, with stars weighing around 
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 100 solar masses [10]. Population III stars and galaxies were short lived and their first metals 
 were expelled from resulting supernovae, enriching the Universe. They were built from 
 metal-free primordial gas (Hydrogen gas) and had virtually no metal content [52]. In contrast, 
 late stars and galaxies, such as the sun and Milky Way have higher metallicity. When the first 
 stars burned through hydrogen and became supernovae, their metals flew across the universe 
 through stellar winds. This process allowed for newer stars or Population I to have high metals 
 because they formed from gas that has already been enriched by older stars and galaxies [53]. 

 Within Population I galaxies, on average, older stars and galaxies have higher metallicity. 
 Older stars have higher metallicity because they have more time to burn elements. Moreover, 
 early-type galaxies tend to have lower gas groups compared to late-type galaxies. This 
 difference in gas fractions leads to greater oxygen abundance in early-type galaxies, which is 
 consistent with current observations [54]. 

 5. Conclusion 
 A wide range of observational evidence demonstrates that dark matter plays a key role in 

 galaxy formation and cosmic structure. From the dynamics of individual galaxies to the 
 anisotropies of the CMB and structure formation, dark matter provides the framework for the 
 growth of the Universe. Without it, galaxies and clusters could not have formed to how they are 
 seen today, given the timeframe. 

 The Lambda CDM explains how dark matter dictates the environments in which galaxies 
 can form and then evolve. Differences between early and late galaxies reflect changes in 
 growth, merger rates, and differences between baryonic and dark matter. 

 Despite dark matter's success in explaining many phenomena of the universe, significant 
 challenges remain. The microscopic nature of dark matter is still widely unknown and 
 differences between simulations and observations on small scales continue to create more 
 alternate models of baryonic physics. Future observations from future generation surveys and 
 experiments, promise to refine the understanding of dark matter and its role in galaxy formation. 

 Ultimately, further progress in this area will require integration of cosmology, astrophysics, 
 and other particle physics. By emphasizing how dark matter helps with the formation of galaxies 
 and other structures, astronomers move closer to understanding both large-scale structure of 
 the Universe and the nature of dark matter. Since dark matter is a particle, understanding would 
 help us understand particle physics. The current field is focused on dark matter being an ultra 
 light or axion. Future CMB experiments and measurements will provide us with higher resolution 
 and detectors, allowing us to pin down the Lambda CDM and understand the properties of dark 
 matter. 
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