Preprint / Version 1

The Genetic and Epigenetic Factors Affecting Autism Spectrum Disorder

##article.authors##

  • Annika Pathak Dougherty Valley High School

DOI:

https://doi.org/10.58445/rars.2491

Keywords:

Autism Spectrum Disorder, DNA methylation, inheritance, epigenetics, mutations

Abstract

This article investigates the genetic aspects of Autism Spectrum Disorder (ASD), which is a condition that impacts many individuals and families.  The genetic underpinnings of ASD are examined in this article, emphasizing its heritability and the role of genetic predisposition in familial cases. Research indicates that ASD has a strong genetic component, with studies demonstrating an increased likelihood of diagnosis in individuals with affected relatives.  Beyond genetic inheritance, this article also explores environmental influences on ASD risk. Epigenetics, in particular, provides insight into how external factors, such as prenatal exposure to toxins, maternal health, and early childhood experiences, can modify gene expression. These modifications may contribute to the development of ASD, even in individuals with a genetic predisposition.  Environmental factors may interact with genetic vulnerabilities to influence symptom severity and presentation. Studying these interactions helps researchers understand the broader range of ASD risk factors.

Furthermore, the article will discuss key indicators of ASD, including social communication challenges, repetitive behaviors, and sensory sensitivities. Understanding these symptoms, along with their genetic and environmental origins, is essential for early diagnosis and intervention. The interaction between genetics and environmental factors highlights the complexity of ASD and underscores the need for further research to improve diagnostic methods and treatment strategies. By analyzing the current literature on ASD’s genetic and environmental determinants, this article provides a comprehensive review of the factors contributing to the disorder. Expanding knowledge in this area can enhance awareness and support future research efforts to better understand, diagnose, and manage Autism Spectrum Disorder.

References

Atsem, S., Reichenbach, J., Potabattula, R., Dittrich, M., Nava, C., Depienne, C., Böhm, L., Rost, S., Hahn, T., Schorsch, M., Haaf, T., & Hajj, N. E. (2016). Paternal age effects on spermFOXK1andKCNA7methylation and transmission into the next generation. Human Molecular Genetics, ddw328. https://doi.org/10.1093/hmg/ddw328

Balasco, L., Provenzano, G., & Bozzi, Y. (2020). Sensory Abnormalities in Autism Spectrum Disorders: a focus on the tactile domain, from genetic mouse models to the clinic. Frontiers in Psychiatry, 10. https://doi.org/10.3389/fpsyt.2019.01016

Deng, W., Zou, X., Deng, H., Li, J., Tang, C., Wang, X., & Guo, X. (2015). The relationship among genetic heritability, environmental effects, and autism spectrum disorders. Journal of Child Neurology, 30(13), 1794–1799. https://doi.org/10.1177/0883073815580645

Edelson, L. R., & Saudino, K. J. (2009). Genetic and environmental influences on Autistic-Like behaviors in 2-Year-Old twins. Behavior Genetics, 39(3), 255–264. https://doi.org/10.1007/s10519-009-9270-3

Epigenetics, health, and disease. (2025, January 31). Genomics and Your Health. https://www.cdc.gov/genomics-and-health/epigenetics/index.html

Fatemi, S. H. (2015). The molecular basis of autism. In Contemporary clinical neuroscience. https://doi.org/10.1007/978-1-4939-2190-4

Fombonne, E. (2009). Epidemiology of pervasive developmental disorders. Pediatric Research, 65(6), 591–598. https://doi.org/10.1203/pdr.0b013e31819e7203

Gaugler, T., Klei, L., Sanders, S. J., Bodea, C. A., Goldberg, A. P., Lee, A. B., Mahajan, M., Manaa, D., Pawitan, Y., Reichert, J., Ripke, S., Sandin, S., Sklar, P., Svantesson, O., Reichenberg, A., Hultman, C. M., Devlin, B., Roeder, K., & Buxbaum, J. D. (2014). Most genetic risk for autism resides with common variation. Nature Genetics, 46(8), 881–885. https://doi.org/10.1038/ng.3039

Genetics Basics. (2024, May 15). Genomics and Your Health. https://www.cdc.gov/genomics-and-health/about/index.html

Gholamalizadeh, H., Amiri-Shahri, M., Rasouli, F., Ansari, A., Rahimi, V. B., & Askari, V. R. (2024). DNA methylation in autism spectrum disorders: biomarker or pharmacological target? Brain Sciences, 14(8), 737. https://doi.org/10.3390/brainsci14080737

Hyman, S. L., Levy, S. E., Myers, S. M., Kuo, D. Z., Apkon, S., Davidson, L. F., Ellerbeck, K. A., Foster, J. E., Noritz, G. H., Leppert, M. O., Saunders, B. S., Stille, C., Yin, L., Weitzman, C. C., Childers, D. O., Levine, J. M., Peralta-Carcelen, A. M., Poon, J. K., Smith, P. J., . . . Bridgemohan, C. (2019). Identification, evaluation, and management of children with autism spectrum disorder. PEDIATRICS, 145(1). https://doi.org/10.1542/peds.2019-3447

Jackson, A., & Robinson, S. (2001). Dietary guidelines for pregnancy: a review of current evidence. Public Health Nutrition, 4(2b), 625–630. https://doi.org/10.1079/phn2001146

Jeddi, M. Z., Janani, L., Memari, A. H., Akhondzadeh, S., & Yunesian, M. (2016). The role of phthalate esters in autism development: A systematic review. Environmental Research, 151, 493–504. https://doi.org/10.1016/j.envres.2016.08.021

Keil, K. P., & Lein, P. J. (2016). DNA methylation: a mechanism linking environmental chemical exposures to risk of autism spectrum disorders? Environmental Epigenetics, 2(1), dvv012. https://doi.org/10.1093/eep/dvv012

Kimura, R., Nakata, M., Funabiki, Y., Suzuki, S., Awaya, T., Murai, T., & Hagiwara, M. (2019). An epigenetic biomarker for adult high-functioning autism spectrum disorder. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-50250-9

King, M., & Bearman, P. (2009). Diagnostic change and the increased prevalence of autism. International Journal of Epidemiology, 38(5), 1224–1234. https://doi.org/10.1093/ije/dyp261

Marshall, C. R., Noor, A., Vincent, J. B., Lionel, A. C., Feuk, L., Skaug, J., Shago, M., Moessner, R., Pinto, D., Ren, Y., Thiruvahindrapduram, B., Fiebig, A., Schreiber, S., Friedman, J., Ketelaars, C. E., Vos, Y. J., Ficicioglu, C., Kirkpatrick, S., Nicolson, R., . . . Scherer, S. W. (2008). Structural variation of chromosomes in autism spectrum disorder. The American Journal of Human Genetics, 82(2), 477–488. https://doi.org/10.1016/j.ajhg.2007.12.009

Masini, E., Loi, E., Vega-Benedetti, A. F., Carta, M., Doneddu, G., Fadda, R., & Zavattari, P. (2020). An overview of the main genetic, epigenetic and environmental factors involved in autism spectrum disorder focusing on synaptic activity. International Journal of Molecular Sciences, 21(21), 8290. https://doi.org/10.3390/ijms21218290

Mottron, L., & Bzdok, D. (2020). Autism spectrum heterogeneity: fact or artifact? Molecular Psychiatry, 25(12), 3178–3185. https://doi.org/10.1038/s41380-020-0748-y

Muhle, R., Trentacoste, S. V., & Rapin, I. (2004). The genetics of autism. PEDIATRICS, 113(5), e472–e486. https://doi.org/10.1542/peds.113.5.e472

Nguyen, A., Rauch, T. A., Pfeifer, G. P., & Hu, V. W. (2010). Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA , whose protein product is reduced in autistic brain. The FASEB Journal, 24(8), 3036–3051. https://doi.org/10.1096/fj.10-154484

Pinto, D., Pagnamenta, A. T., Klei, L., Anney, R., Merico, D., Regan, R., Conroy, J., Magalhaes, T. R., Correia, C., Abrahams, B. S., Almeida, J., Bacchelli, E., Bader, G. D., Bailey, A. J., Baird, G., Battaglia, A., Berney, T., Bolshakova, N., Bölte, S., . . . Betancur, C. (2010). Functional impact of global rare copy number variation in autism spectrum disorders. Nature, 466(7304), 368–372. https://doi.org/10.1038/nature09146

Prevalence of autism spectrum disorders--autism and developmental disabilities monitoring network, six sites, United States, 2000. (2007, February 9). PubMed. https://pubmed.ncbi.nlm.nih.gov/17287714/

Talkowski, M. E., Minikel, E. V., & Gusella, J. F. (2014). Autism Spectrum Disorder Genetics. Harvard Review of Psychiatry, 22(2), 65–75. https://doi.org/10.1097/hrp.0000000000000002

Wang, K., Zhang, H., Ma, D., Bucan, M., Glessner, J. T., Abrahams, B. S., Salyakina, D., Imielinski, M., Bradfield, J. P., Sleiman, P. M. A., Kim, C. E., Hou, C., Frackelton, E., Chiavacci, R., Takahashi, N., Sakurai, T., Rappaport, E., Lajonchere, C. M., Munson, J., . . . Hakonarson, H. (2009). Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature, 459(7246), 528–533. https://doi.org/10.1038/nature07999

Werling, D. M. (2016). The role of sex-differential biology in risk for autism spectrum disorder. Biology of Sex Differences, 7(1). https://doi.org/10.1186/s13293-016-0112-8

Wing, L., & Potter, D. (2002). The epidemiology of autistic spectrum disorders: is the prevalence rising? Mental Retardation and Developmental Disabilities Research Reviews, 8(3), 151–161. https://doi.org/10.1002/mrdd.10029

Wu, S., Wu, F., Ding, Y., Hou, J., Bi, J., & Zhang, Z. (2016). Advanced parental age and autism risk in children: a systematic review and meta‐analysis. Acta Psychiatrica Scandinavica, 135(1), 29–41. https://doi.org/10.1111/acps.12666

Zhu, Y., Mordaunt, C. E., Yasui, D. H., Marathe, R., Coulson, R. L., Dunaway, K. W., Jianu, J. M., Walker, C. K., Ozonoff, S., Hertz-Picciotto, I., Schmidt, R. J., & LaSalle, J. M. (2019). Placental DNA methylation levels at CYP2E1 and IRS2 are associated with child outcome in a prospective autism study. Human Molecular Genetics, 28(16), 2659–2674. https://doi.org/10.1093/hmg/ddz084

Posted

2025-04-23

Categories