Preprint / Version 1

A Novel Antibody-Drug Conjugate to Inhibit Glioblastoma Multiforme Progression

##article.authors##

  • Suditi Kedambadi Evergreen Valley High School

DOI:

https://doi.org/10.58445/rars.2654

Keywords:

antibody-drug conjugates, blood-brain barrier, targeted cancer therapy, glioblastoma multiforme, targeted drug delivery

Abstract

Glioblastoma multiforme (GBM) is an incurable brain tumor characterized by aggressive progression and frequent relapses. The average life expectancy for GBM patients is 9 months, with only 3 to 5 percent of patients surviving longer than 3 years. Although multiple chemotherapies and immunotherapies are available to potentially prolong the life of patients with GBM, the prognosis remains extremely poor. The two biggest challenges in treating glioblastoma multiforme are eliminating dormant, cancerous glial cells left behind after surgery and transporting therapeutic molecules across the highly selective blood-brain barrier. The constantly evolving field of nanomedicine has shown great promise in addressing these challenges. Antibody-drug conjugates, or ADCs, consist of a combination of a monoclonal antibody (mAb) covalently linked to a cytotoxic payload molecule. When used to inhibit cancer progression, the antibody specifically binds to antigens overexpressed on the surface of tumors, selectively destroying cancer cells and preserving healthy tissue. While ADCs have been approved to treat breast cancer, there is minimal research on how they can be used to safely combat GBM. In this paper, we discuss the design of a novel antibody-drug conjugate targeting IL13Rɑ2 and suggest a method of delivery specific to GBM.

References

Adamski, V., Hempelmann, A., Flüh, C., Lucius, R., Synowitz, M., Hattermann, K., & Held-Feindt, J. (2017). Dormant glioblastoma cells acquire stem cell characteristics and are differentially affected by Temozolomide and AT101 treatment. Oncotarget, 8(64), 108064. https://doi.org/10.18632/oncotarget.22514

Agosti, E., Garaba, A., Antonietti, S., Ius, T., Fontanella, M. M., Zeppieri, M., & Panciani, P. P. (2024). CAR-T Cells Therapy in Glioblastoma: A Systematic Review on Molecular Targets and Treatment Strategies. International Journal of Molecular Sciences, 25(13), 7174. https://doi.org/10.3390/ijms25137174

Amjad, M. T., Chidharla, A., & Kasi, A. (2025). Cancer Chemotherapy. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK564367/

Anami, Y., Yamazaki, C. M., Xiong, W., Gui, X., Zhang, N., An, Z., & Tsuchikama, K. (2018). Glutamic acid–valine–citrulline linkers ensure stability and efficacy of antibody–drug conjugates in mice. Nature Communications, 9(1), 2512. https://doi.org/10.1038/s41467-018-04982-3

Angom, R. S., Nakka, N. M. R., & Bhattacharya, S. (2023). Advances in Glioblastoma Therapy: An Update on Current Approaches. Brain Sciences, 13(11), 1536. https://doi.org/10.3390/brainsci13111536

Balyasnikova, I. V., Wainwright, D. A., Solomaha, E., Lee, G., Han, Y., Thaci, B., & Lesniak, M. S. (2012). Characterization and immunotherapeutic implications for a novel antibody targeting interleukin (IL)-13 receptor α2. The Journal of Biological Chemistry, 287(36), 30215–30227. https://doi.org/10.1074/jbc.M112.370015

Baron, R. B., Lakomkin, N., Schupper, A. J., Nistal, D., Nael, K., Price, G., & Hadjipanayis, C. G. (2020). Postoperative outcomes following glioblastoma resection using a robot-assisted digital surgical exoscope: A case series. Journal of Neuro-Oncology, 148(3), 519–527. https://doi.org/10.1007/s11060-020-03543-3

Bhardwaj, R., Suzuki, A., Leland, P., Joshi, B. H., & Puri, R. K. (2018). Identification of a novel role of IL-13Rα2 in human Glioblastoma multiforme: Interleukin-13 mediates signal transduction through AP-1 pathway. Journal of Translational Medicine, 16(1), 369. https://doi.org/10.1186/s12967-018-1746-6

Brown, N. F., Ottaviani, D., Tazare, J., Gregson, J., Kitchen, N., Brandner, S., Fersht, N., & Mulholland, P. (2022). Survival Outcomes and Prognostic Factors in Glioblastoma. Cancers, 14(13), 3161. https://doi.org/10.3390/cancers14133161

Cancer Therapeutics Response Portal. (n.d.). Retrieved November 24, 2024, from https://portals.broadinstitute.org/ctrp.v2.2/?page=#ctd2BodyHome

Chari, R. V. J. (2008). Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Accounts of Chemical Research, 41(1), 98–107. https://doi.org/10.1021/ar700108g

Chen, H., & Konofagou, E. E. (2014). The Size of Blood–Brain Barrier Opening Induced by Focused Ultrasound is Dictated by the Acoustic Pressure. Journal of Cerebral Blood Flow & Metabolism, 34(7), 1197–1204. https://doi.org/10.1038/jcbfm.2014.71

Cheng, C. Y., & Mruk, D. D. (2012). The Blood-Testis Barrier and Its Implications for Male Contraception. Pharmacological Reviews, 64(1), 16–64. https://doi.org/10.1124/pr.110.002790

Choi, D.-J., Armstrong, G., Lozzi, B., Vijayaraghavan, P., E. Plon, S., C. Wong, T., Boerwinkle, E., M. Muzny, D., Chen, H.-C., A. Gibbs, R., T. Ostrom, Q., Melin, B., Deneen, B., L. Bondy, M., Consortium, T. G., Consortium, G. E. R., N. Bainbridge, M., Amos, C. I., Barnholtz-Sloan, J. S., … Zarowiecki, M. (2023). The genomic landscape of familial glioma. Science Advances. https://doi.org/10.1126/sciadv.ade2675

Fu, Z., Li, S., Han, S., Shi, C., & Zhang, Y. (2022). Antibody drug conjugate: The “biological missile” for targeted cancer therapy. Signal Transduction and Targeted Therapy, 7(1), 93. https://doi.org/10.1038/s41392-022-00947-7

Fukuda, M. E., Iwadate, Y., Machida, T., Hiwasa, T., Nimura, Y., Nagai, Y., Takiguchi, M., Tanzawa, H., Yamaura, A., & Seki, N. (2005). Cathepsin D Is a Potential Serum Marker for Poor Prognosis in Glioma Patients. Cancer Research, 65(12), 5190–5194. https://doi.org/10.1158/0008-5472.CAN-04-4134

Gondi, C. S., & Rao, J. S. (2013). Cathepsin B as a cancer target. Expert Opinion on Therapeutic Targets, 17(3), 281–291. https://doi.org/10.1517/14728222.2013.740461

Hamblett, K. J., Senter, P. D., Chace, D. F., Sun, M. M. C., Lenox, J., Cerveny, C. G., Kissler, K. M., Bernhardt, S. X., Kopcha, A. K., Zabinski, R. F., Meyer, D. L., & Francisco, J. A. (2004). Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 10(20), 7063–7070. https://doi.org/10.1158/1078-0432.CCR-04-0789

Han, X., Ye, J., Huang, R., Li, Y., Liu, J., Meng, T., & Song, D. (2022). Pan-cancer analysis reveals interleukin-17 family members as biomarkers in the prediction for immune checkpoint inhibitor curative effect. Frontiers in Immunology, 13, 900273. https://doi.org/10.3389/fimmu.2022.900273

Hobson, A. D. (2024). The medicinal chemistry evolution of antibody–drug conjugates. RSC Medicinal Chemistry, 15(3), 809–831. https://doi.org/10.1039/D3MD00674C

Jaén, M., Martín-Regalado, Á., Bartolomé, R. A., Robles, J., & Casal, J. I. (2022). Interleukin 13 receptor alpha 2 (IL13Rα2): Expression, signaling pathways and therapeutic applications in cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1877(5), 188802. https://doi.org/10.1016/j.bbcan.2022.188802

Jakobsen, M. K., & Gjerstorff, M. F. (2020). CAR T-Cell Cancer Therapy Targeting Surface Cancer/Testis Antigens. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01568

Jia, J. L., Alshamsan, B., & Ng, T. L. (2023). Temozolomide Chronotherapy in Glioma: A Systematic Review. Current Oncology, 30(2), 1893. https://doi.org/10.3390/curroncol30020147

Latzer, P., Zelba, H., Battke, F., Reinhardt, A., Shao, B., Bartsch, O., Rabsteyn, A., Harter, J., Schulze, M., Okech, T., Golf, A., Kyzirakos-Feger, C., Kayser, S., Pieper, N., Feldhahn, M., Wünsche, J., Seitz, C., Hadaschik, D., Garbe, C., … Biskup, S. (2024). A real-world observation of patients with glioblastoma treated with a personalized peptide vaccine. Nature Communications, 15(1), 6870. https://doi.org/10.1038/s41467-024-51315-8

Lim, M., Xia, Y., Bettegowda, C., & Weller, M. (2018). Current state of immunotherapy for glioblastoma. Nature Reviews Clinical Oncology, 15(7), 422–442. https://doi.org/10.1038/s41571-018-0003-5

Liu, K., Li, M., Li, Y., Li, Y., Chen, Z., Tang, Y., Yang, M., Deng, G., & Liu, H. (2024). A review of the clinical efficacy of FDA-approved antibody‒drug conjugates in human cancers. Molecular Cancer, 23(1), 62. https://doi.org/10.1186/s12943-024-01963-7

Lu, J., Jiang, F., Lu, A., & Zhang, G. (2016). Linkers Having a Crucial Role in Antibody–Drug Conjugates. International Journal of Molecular Sciences, 17(4), 561. https://doi.org/10.3390/ijms17040561

Lv, Y., Feng, G., Yang, L., Wu, X., Wang, C., Ye, A., wang, S., Xu, C., & Shi, H. (2024). Differential whole-genome doubling based signatures for improvement on clinical outcomes and drug response in patients with breast cancer. Heliyon, 10(7), e28586. https://doi.org/10.1016/j.heliyon.2024.e28586

Maecker, H., Jonnalagadda, V., Bhakta, S., Jammalamadaka, V., & Junutula, J. R. (2023). Exploration of the antibody–drug conjugate clinical landscape. mAbs, 15(1), 2229101. https://doi.org/10.1080/19420862.2023.2229101

Majc, B., Habič, A., Novak, M., Rotter, A., Porčnik, A., Mlakar, J., Župunski, V., Fonović, U. P., Knez, D., Zidar, N., Gobec, S., Kos, J., Turnšek, T. L., Pišlar, A., & Breznik, B. (2022). Upregulation of Cathepsin X in Glioblastoma: Interplay with γ-Enolase and the Effects of Selective Cathepsin X Inhibitors. International Journal of Molecular Sciences, 23(3), 1784. https://doi.org/10.3390/ijms23031784

Mark, C., Lee, J. S., Cui, X., & Yuan, Y. (2023). Antibody–Drug Conjugates in Breast Cancer: Current Status and Future Directions. International Journal of Molecular Sciences, 24(18), 13726. https://doi.org/10.3390/ijms241813726

McCombs, J. R., & Owen, S. C. (2015). Antibody Drug Conjugates: Design and Selection of Linker, Payload and Conjugation Chemistry. The AAPS Journal, 17(2), 339–351. https://doi.org/10.1208/s12248-014-9710-8

Miermeister, C. P., Petersenn, S., Buchfelder, M., Fahlbusch, R., Lüdecke, D. K., Hölsken, A., Bergmann, M., Knappe, H. U., Hans, V. H., Flitsch, J., Saeger, W., & Buslei, R. (2015). Histological criteria for atypical pituitary adenomas – data from the German pituitary adenoma registry suggests modifications. Acta Neuropathologica Communications, 3, 50. https://doi.org/10.1186/s40478-015-0229-8

Min, H.-Y., & Lee, H.-Y. (2022). Molecular targeted therapy for anticancer treatment. Experimental & Molecular Medicine, 54(10), 1670–1694. https://doi.org/10.1038/s12276-022-00864-3

Mohammed, S., M, D., & T, A. (2022). Survival and quality of life analysis in glioblastoma multiforme with adjuvant chemoradiotherapy: A retrospective study. Reports of Practical Oncology and Radiotherapy, 27(6), 1026–1036. https://doi.org/10.5603/RPOR.a2022.0113

Newman, J. P., Wang, G. Y., Arima, K., Guan, S. P., Waters, M. R., Cavenee, W. K., Pan, E., Aliwarga, E., Chong, S. T., Kok, C. Y. L., Endaya, B. B., Habib, A. A., Horibe, T., Ng, W. H., Ho, I. A. W., Hui, K. M., Kordula, T., & Lam, P. Y. P. (2017). Interleukin-13 receptor alpha 2 cooperates with EGFRvIII signaling to promote glioblastoma multiforme. Nature Communications, 8(1), 1913. https://doi.org/10.1038/s41467-017-01392-9

Qazi, M. A., Vora, P., Venugopal, C., Sidhu, S. S., Moffat, J., Swanton, C., & Singh, S. K. (2017). Intratumoral heterogeneity: Pathways to treatment resistance and relapse in human glioblastoma. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 28(7), 1448–1456. https://doi.org/10.1093/annonc/mdx169

Rong, L., Li, N., & Zhang, Z. (2022). Emerging therapies for glioblastoma: Current state and future directions. Journal of Experimental & Clinical Cancer Research, 41(1), 142. https://doi.org/10.1186/s13046-022-02349-7

Sattiraju, A., Sai, K. K. S., Xuan, A., Pandya, D. N., Almaguel, F. G., Wadas, T. J., Herpai, D. M., Debinski, W., & Mintz, A. (2017). IL13RA2 targeted alpha particle therapy against glioblastomas. Oncotarget, 8(26), 42997–43007. https://doi.org/10.18632/oncotarget.17792

Sharma, S., Li, Z., Bussing, D., & Shah, D. K. (2020). Evaluation of Quantitative Relationship Between Target Expression and Antibody-Drug Conjugate Exposure Inside Cancer Cells. Drug Metabolism and Disposition, 48(5), 368–377. https://doi.org/10.1124/dmd.119.089276

Smith, C. J., Perfetti, T. A., Chokshi, C., Venugopal, C., Ashford, J. W., & Singh, S. K. (2024). Risk factors for glioblastoma are shared by other brain tumor types. Human & Experimental Toxicology, 43, 09603271241241796. https://doi.org/10.1177/09603271241241796

Song, C. H., Jeong, M., In, H., Kim, J. H., Lin, C.-W., & Han, K. H. (2023). Trends in the Development of Antibody-Drug Conjugates for Cancer Therapy. Antibodies, 12(4), 72. https://doi.org/10.3390/antib12040072

Song, X., Wei, C., & Li, X. (2021). The potential role and status of IL-17 family cytokines in breast cancer. International Immunopharmacology, 95, 107544. https://doi.org/10.1016/j.intimp.2021.107544

Sottoriva, A., Spiteri, I., Piccirillo, S. G. M., Touloumis, A., Collins, V. P., Marioni, J. C., Curtis, C., Watts, C., & Tavaré, S. (2013). Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proceedings of the National Academy of Sciences, 110(10), 4009–4014. https://doi.org/10.1073/pnas.1219747110

Su, Z., Xiao, D., Xie, F., Liu, L., Wang, Y., Fan, S., Zhou, X., & Li, S. (2021). Antibody–drug conjugates: Recent advances in linker chemistry. Acta Pharmaceutica Sinica. B, 11(12), 3889–3907. https://doi.org/10.1016/j.apsb.2021.03.042

Syro, L. V., Rotondo, F., Camargo, M., Ortiz, L. D., Serna, C. A., & Kovacs, K. (2018). Temozolomide and Pituitary Tumors: Current Understanding, Unresolved Issues, and Future Directions. Frontiers in Endocrinology, 9, 318. https://doi.org/10.3389/fendo.2018.00318

Tan, S., Li, D., & Zhu, X. (2020). Cancer immunotherapy: Pros, cons and beyond. Biomedicine & Pharmacotherapy, 124, 109821. https://doi.org/10.1016/j.biopha.2020.109821

Tang, Z., Kang, B., Li, C., Chen, T., & Zhang, Z. (2019). GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Research, 47(W1), W556. https://doi.org/10.1093/nar/gkz430

Thaci, B., Brown, C. E., Binello, E., Werbaneth, K., Sampath, P., & Sengupta, S. (2014). Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy. Neuro-Oncology, 16(10), 1304–1312. https://doi.org/10.1093/neuonc/nou045

Thakkar, J. P., Dolecek, T. A., Horbinski, C., Ostrom, Q. T., Lightner, D. D., Barnholtz-Sloan, J. S., & Villano, J. L. (2014). Epidemiologic and Molecular Prognostic Review of Glioblastoma. Cancer Epidemiology, Biomarkers & Prevention, 23(10), 1985–1996. https://doi.org/10.1158/1055-9965.EPI-14-0275

Theocharopoulos, C., Lialios, P.-P., Samarkos, M., Gogas, H., & Ziogas, D. C. (2021). Antibody-Drug Conjugates: Functional Principles and Applications in Oncology and Beyond. Vaccines, 9(10), 1111. https://doi.org/10.3390/vaccines9101111

Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M. D., Miller, C. R., Ding, L., Golub, T., Mesirov, J. P., Alexe, G., Lawrence, M., O’Kelly, M., Tamayo, P., Weir, B. A., Gabrie, S., Winckler, W., Gupta, S., Jakkula, L., … Network, T. C. G. A. R. (2010). An integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR and NF1. Cancer Cell, 17(1), 98. https://doi.org/10.1016/j.ccr.2009.12.020

Wu, W., Klockow, J. L., Zhang, M., Lafortune, F., Chang, E., Jin, L., Wu, Y., & Daldrup-Link, H. E. (2021). Glioblastoma Multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacological Research, 171, 105780. https://doi.org/10.1016/j.phrs.2021.105780

Yadati, T., Houben, T., Bitorina, A., & Shiri-Sverdlov, R. (2020). The Ins and Outs of Cathepsins: Physiological Function and Role in Disease Management. Cells, 9(7), 1679. https://doi.org/10.3390/cells9071679

Ye, N., Ding, Y., Wild, C., Shen, Q., & Zhou, J. (2014). Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1): Miniperspective. Journal of Medicinal Chemistry, 57(16), 6930–6948. https://doi.org/10.1021/jm5004733

Zeng, J., Zhang, J., Yang, Y.-Z., Wang, F., Jiang, H., Chen, H.-D., Wu, H.-Y., Sai, K., & Hu, W.-M. (n.d.). IL13RA2 is overexpressed in malignant gliomas and related to clinical outcome of patients.

Downloads

Posted

2025-06-22