Preprint / Version 1

An Integrative Review of Genetic and Non-Genetic Factors Influencing Human Skeletal Muscle Hypertrophy

##article.authors##

  • Ashmit Roy California High School

DOI:

https://doi.org/10.58445/rars.2793

Keywords:

Muscle growth, Muscle hypertrophy, Genetic factors, Non-genetic factors

Abstract

Muscle growth is a complex biological process that is limited by both environmental and genetic factors. This review paper explores the integration of genetic and non-genetic factors and how they impact muscle growth and variation among individuals. Both of these influences have the potential to significantly guide muscle growth, causing a widespread contrast in muscle mass within individuals.

Key genes, which are the Androgen Receptor gene, Myostatin gene, IGF-1 gene, and the ACTN3 gene, cause the largest impacts on muscle hypertrophy, leading to a widespread variation in muscle mass within humans. Other genes, including KDM5B, OBSCN, GIGYF1, TTN, RB1CC1, and EIF3J, have been found to increase strength. Crucial non-genetic factors have also been identified to significantly impact muscle hypertrophy and largely contribute to the overall variation in muscle mass among humans. These factors are sleep, hormones, physical training, nutrition, and age. This knowledge allows personalized fitness and nutrition practice to maximize muscle growth potential and find applications in varied fields from sports science to interventions in medicine.

References

Attwaters, M., & Hughes, S. (2022). Cellular and molecular pathways controlling muscle size in response to exercise. The FEBS Journal, 289(5), 15820. https://doi.org/10.1111/febs.15820

Baig, M. H., Ahmad, K., Moon, J. S., Park, S. Y., Ho Lim, J., Chun, H. J., Qadri, A. F., Hwang, Y. C., Jan, A. T., Ahmad, S. S., Ali, S., Shaikh, S., Lee, E. J., & Choi, I. (2022). Myostatin and its regulation: A comprehensive review of myostatin inhibiting strategies. Frontiers in Physiology, 13, 876078. https://doi.org/10.3389/fphys.2022.876078

Braun, T., & Gautel, M. (2011). Transcriptional mechanisms regulating skeletal muscle differentiation, growth, and homeostasis. Nature Reviews Molecular Cell Biology, 12(6), 349–361. https://doi.org/10.1038/nrm3118

Burgerhout, E., Mommens, M., Johnsen, H., Aunsmo, A., Santi, N., & Andersen, Ø. (2017). Genetic background and embryonic temperature affect DNA methylation and expression of myogenin and muscle development in Atlantic salmon (Salmo salar). PLoS ONE, 12(6), e0179918. https://doi.org/10.1371/journal.pone.0179918

Campbell, B. C., Gray, P. B., Eisenberg, D. T. A., Ellison, P., & Sorenson, M. D. (2009). Androgen receptor CAG repeats and body composition among Ariaal men. International Journal of Andrology, 32(2), 140–148. https://doi.org/10.1111/j.1365-2605.2007.00825.x

Chennaoui, M., Vanneau, T., Trignol, A., Arnal, P., Gomez-Mérino, D., Baudot, C., Perez, J., Pochettino, S., Eirale, C., & Chalabi, H. (2021). How does sleep help recovery from exercise-induced muscle injuries? Journal of Science and Medicine in Sport. Advance online publication. https://doi.org/10.1016/j.jsams.2021.05.007

Colorado, M., Jaramillo, R., & Arango, L. (2023). Influence of genetics and epigenetics on the process of muscle hypertrophy: A systematic review. Movement & Sport Sciences - Science & Motricité. Advance online publication. https://doi.org/10.1051/sm/2023007

Cruz-Jentoft, A. J., Dawson Hughes, B., Scott, D., Sanders, K. M., & Rizzoli, R. (2020). Nutritional strategies for maintaining muscle mass and strength from middle age to later life: A narrative review. Maturitas, 132, 57–64. https://doi.org/10.1016/j.maturitas.2019.11.007

Dáttilo, M., Antunes, H., Medeiros, A., Neto, M., Souza, H., Tufik, S., & Mello, M. (2011). Sleep and muscle recovery: Endocrinological and molecular basis for a new and promising hypothesis. Medical Hypotheses, 77(2), 220–222. https://doi.org/10.1016/j.mehy.2011.04.017

Dáttilo, M., Antunes, H., Nunes-Galbes, N., Mônico-Neto, M., Souza, H., Quaresma, M., Lee, K., Ugrinowitsch, C., Tufik, S., & De Mello, M. (2019). Effects of sleep deprivation on the acute skeletal muscle recovery after exercise. Medicine & Science in Sports & Exercise. Advance online publication. https://doi.org/10.1249/MSS.0000000000002137

De Sousa, L., Marshall, A., Norman, J., Fuqua, J., Lira, V., Rutledge, J., & Bodine, S. (2020). The effects of diet composition and chronic obesity on muscle growth and function. Journal of Applied Physiology. Advance online publication. https://doi.org/10.1152/japplphysiol.00156.2020

Dennis, R., Przybyla, B., Gurley, C., Kortebein, P., Simpson, P., Sullivan, D., & Peterson, C. (2008). Aging alters gene expression of growth and remodeling factors in human skeletal muscle both at rest and in response to acute resistance exercise. Physiological Genomics, 32(3), 393–400. https://doi.org/10.1152/physiolgenomics.00191.2007

Fink, J., Schoenfeld, B., & Nakazato, K. (2018). The role of hormones in muscle hypertrophy. The Physician and Sportsmedicine, 46(2), 129–134. https://doi.org/10.1080/00913847.2018.1406778

Florini, J. (1987). Hormonal control of muscle growth. Muscle & Nerve, 10(7), 577–598. https://doi.org/10.1002/mus.880100702

Frost, R., & Lang, C. (2007). Protein kinase B/Akt: A nexus of growth factor and cytokine signaling in determining muscle mass. Journal of Applied Physiology, 103(1), 378–387. https://doi.org/10.1152/japplphysiol.00089.2007

Fu, Y., Shang, P., Zhang, B., Tian, X., Nie, R., Zhang, R., & Zhang, H. (2021). Function of the porcine TRPC1 gene in myogenesis and muscle growth. Cells, 10(1), 147. https://doi.org/10.3390/cells10010147

Fushimi, S., Nohno, T., & Katsuyama, H. (2023). Chronic Stress Induces Type 2b Skeletal Muscle Atrophy via the Inhibition of mTORC1 Signaling in Mice. Medical Sciences, 11(1), 19. https://doi.org/10.3390/medsci11010019.

Grillenberger, M., Neumann, C., Murphy, S., Bwibo, N., Veer, V., Hautvast, J., & West, C. (2003). Food supplements have a positive impact on weight gain and the addition of animal source foods increases lean body mass of Kenyan schoolchildren. The Journal of Nutrition, 133(11 Suppl 2), 3957S–3964S. https://doi.org/10.1093/jn/133.11.3957S

Haddad, F., & Adams, G. (2006). Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. Journal of Applied Physiology, 100(4), 1188–1203. https://doi.org/10.1152/japplphysiol.01227.2005

Harridge, S. (2003). Ageing and local growth factors in muscle. Scandinavian Journal of Medicine & Science in Sports, 13(1), 1–5. https://doi.org/10.1034/j.1600-0838.2003.20235.x

Huang, Y., Jiang, G., Abasubong, K., Wang, C., Zhang, L., Dai, Y., Zheng, X., Cao, X., He, C., Wang, X., Xiao, K., Li, X., Wu, Y., & Liu, W. (2021). High lipid and high carbohydrate diets affect muscle growth of blunt snout bream (Megalobrama amblycephala) through different signaling pathways. Aquaculture, 539, 737495. https://doi.org/10.1016/j.aquaculture.2021.737495

Huang, Y., Bodnar, D., Chen, C. Y., Sanchez-Andrade, G., Sanderson, M., Biogen Biobank Team, Shi, J., Meilleur, K. G., Hurles, M. E., Gerety, S. S., Tsai, E. A., & Runz, H. (2023). Rare genetic variants impact muscle strength. Nature Communications, 14(1), 3449. https://doi.org/10.1038/s41467-023-39247-1

Chal, J., & Pourquié, O. (2017). Making muscle: Skeletal myogenesis in vivo and in vitro. Development, 144(12), 2104–2122. https://doi.org/10.1242/dev.151035

Khlaifawi, M., Kadhim, H., Alsaedi, H., Alfadhli, B., & Alali, A. (2024). Comparative analysis of single vs. two-muscle training programs on upper body muscle growth. Retos. https://doi.org/10.47197/retos.v62.110738

Kraemer, W., Ratamess, N., Hymer, W., Nindl, B., & Fragala, M. (2020). Growth hormone(s), testosterone, insulin-like growth factors, and cortisol: Roles and integration for cellular development and growth with exercise. Frontiers in Endocrinology, 11, 33. https://doi.org/10.3389/fendo.2020.00033

Krzysztofik, M., Wilk, M., Wojdała, G., & Gołaś, A. (2019). Maximizing muscle hypertrophy: A systematic review of advanced resistance training techniques and methods. International Journal of Environmental Research and Public Health, 16(24), 4897. https://doi.org/10.3390/ijerph16244897

Lamon, S., Morabito, A., Arentson-Lantz, E., Knowles, O., Vincent, G., Condo, D., Alexander, S., Garnham, A., Paddon-Jones, D., & Aisbett, B. (2021). The effect of acute sleep deprivation on skeletal muscle protein synthesis and the hormonal environment. Physiological Reports, 9(2), e14660. https://doi.org/10.14814/phy2.14660

Li, B., Feng, L., Wu, X., Cai, M., Yu, J., & Tian, Z. (2022). Effects of different modes of exercise on skeletal muscle mass and function and IGF-1 signaling during early aging in mice. The Journal of Experimental Biology. https://doi.org/10.1242/jeb.244650

Liu, X., Zeng, S., Liu, S., Wang, G., Lai, H., Zhao, X., Bi, S., Guo, D., Chen, X., Yi, H., Su, Y., Zhang, Y., & Li, G. (2020). Identifying the related genes of muscle growth and exploring the functions by compensatory growth in mandarin fish (Siniperca chuatsi). Frontiers in Physiology, 11, 553563. https://doi.org/10.3389/fphys.2020.553563

Martin-Cantero, A., Reijnierse, E., Gill, B., & Maier, A. (2021). Factors influencing the efficacy of nutritional interventions on muscle mass in older adults: A systematic review and meta-analysis. Nutrition Reviews, 79(3), 315–330. https://doi.org/10.1093/nutrit/nuaa064

Millward, D. (1989). The nutritional regulation of muscle growth and protein turnover. Aquaculture, 79(1-4), 1–28. https://doi.org/10.1016/0044-8486(89)90441-9

Mohammadabadi, M., Bordbar, F., Jensen, J., Du, M., & Guo, W. (2021). Key genes regulating skeletal muscle development and growth in farm animals. Animals, 11(3), 835. https://doi.org/10.3390/ani11030835

Moore, D. R., & Burd, N. A. (2009). Exercise intensity matters for both young and old muscles. The Journal of Physiology, 587(3), 511–512. https://doi.org/10.1113/jphysiol.2008.166744

Morrison, M., Halson, S. L., Weakley, J., & Hawley, J. A. (2022). Sleep, circadian biology and skeletal muscle interactions: Implications for metabolic health. Sleep Medicine Reviews, 66, 101700. https://doi.org/10.1016/j.smrv.2022.101700

Ozaki, H., Loenneke, J., Buckner, S., & Abe, T. (2016). Muscle growth across a variety of exercise modalities and intensities: Contributions of mechanical and metabolic stimuli. Medical Hypotheses, 88, 22–26. https://doi.org/10.1016/j.mehy.2015.12.026

Pearson, A. (1990). Muscle growth and exercise. Critical Reviews in Food Science and Nutrition, 29(3), 167–196. https://doi.org/10.1080/10408399009527522

Pearson, S., & Hussain, S. (2015). A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Medicine, 45(2), 187–200. https://doi.org/10.1007/s40279-014-0264-9

Rasmussen, B., & Phillips, S. (2003). Contractile and nutritional regulation of human muscle growth. Exercise and Sport Sciences Reviews, 31(3), 127–131. https://doi.org/10.1097/00003677-200307000-00005

Reggiani, C., & Schiaffino, S. (2020). Muscle hypertrophy and muscle strength: Dependent or independent variables? A provocative review. European Journal of Translational Myology, 30(3), 9311. https://doi.org/10.4081/ejtm.2020.9311

Schoenfeld, B., Ogborn, D., & Krieger, J. (2015). Effect of Repetition Duration During Resistance Training on Muscle Hypertrophy: A Systematic Review and Meta-Analysis. Sports Medicine, 45, 577-585. https://doi.org/10.1007/s40279-015-0304-0.

Schoenfeld, B. J., & Grgic, J. (2020). Effects of range of motion on muscle development during resistance training interventions: A systematic review. SAGE Open Medicine, 8, 2050312120901559. https://doi.org/10.1177/2050312120901559

Sheppard, R. L., Spangenburg, E. E., Chin, E. R., & Roth, S. M. (2011). Androgen receptor polyglutamine repeat length affects receptor activity and C2C12 cell development. Physiological Genomics, 43(21), 1135–1143. https://doi.org/10.1152/physiolgenomics.00049.2011

Straight, C., Fedewa, M., Toth, M., & Miller, M. (2020). Improvements in skeletal muscle fiber size with resistance training are age-dependent in older adults: A systematic review and meta-analysis. Journal of Applied Physiology. https://doi.org/10.1152/japplphysiol.00170.2020

Thornton, K. (2019). Triennial growth symposium: The nutrition of muscle growth: Impacts of nutrition on the proliferation and differentiation of satellite cells in livestock species. Journal of Animal Science, 97(5), 2258–2269. https://doi.org/10.1093/jas/skz081

Verbrugge, S., Schönfelder, M., Becker, L., Nezhad, F., De Angelis, H., & Wackerhage, H. (2018). Genes whose gain or loss-of-function increases skeletal muscle mass in mice: A systematic literature review. Frontiers in Physiology, 9, 553. https://doi.org/10.3389/fphys.2018.00553

Velleman, S. (2007). Muscle development in the embryo and hatchling. Poultry Science, 86(5), 1050–1054. https://doi.org/10.1093/ps/86.5.1050

Volpi, E., Nazemi, R., & Fujita, S. (2004). Muscle tissue changes with aging. Current Opinion in Clinical Nutrition and Metabolic Care, 7(4), 405–410. https://doi.org/10.1097/01.mco.0000134362.76653.b2

Voulgaridou, G., Papadopoulou, S., Spanoudaki, M., Kondyli, F., Alexandropoulou, I., Michailidou, S., Zarogoulidis, P., Matthaios, D., Giannakidis, D., Romanidou, M., & Papadopoulou, S. (2023). Increasing muscle mass in elders through diet and exercise: A literature review of recent RCTs. Foods, 12(6), 1218. https://doi.org/10.3390/foods12061218

Walsh, S., Zmuda, J. M., Cauley, J. A., Shea, P. R., Metter, E. J., Hurley, B. F., et al. (2005). Androgen receptor CAG repeat polymorphism is associated with fat-free mass in men. Journal of Applied Physiology, 98(1), 132–137. https://doi.org/10.1152/japplphysiol.00537.2004

Welle, S., Totterman, S., & Thornton, C. (1996). Effect of age on muscle hypertrophy induced by resistance training. The Journals of Gerontology: Series A, Biological Sciences and Medical Sciences, 51(6), M270–M275. https://doi.org/10.1093/gerona/51A.6.M270

Yang D, Shen Y, Wu C, Huang Y, Lee P, Er N, Huang W, & Tung Y. (2019). Sleep deprivation reduces the recovery of muscle injury induced by high-intensity exercise in a mouse model.. Life sciences, 116835. https://doi.org/10.1016/j.lfs.2019.116835.

Yang, N., MacArthur, D. G., Gulbin, J. P., Hahn, A. G., Beggs, A. H., Easteal, S., & North, K. (2003). ACTN3 genotype is associated with human elite athletic performance. American Journal of Human Genetics, 73(3), 627–631. https://doi.org/10.1086/377590

Yoshida, T., & Delafontaine, P. (2020). Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells, 9(9), 1970. https://doi.org/10.3390/cells9091970

Downloads

Posted

2025-07-24

Categories