Investigating the Enzymatic Mechanism in Polystyrene Degradation: The Computational Modeling Approach
DOI:
https://doi.org/10.58445/rars.2820Keywords:
Styrofoam, Computational modeling, Enzymatic degradation, BiodegradationAbstract
Polystyrene, commonly known as Styrofoam, poses an urgent problem in today’s environmental context. The material resists degradation, allowing it to accumulate in aquatic environments and indirectly enter the food chain as microplastics. While current research has focused on the merits of biodegrading this material, and several microorganisms have been identified to have this capability, the specific enzymatic mechanism through which degradation occurs has not been identified. This research aims to identify a potential mechanism between an identified enzyme (alkane-1-monooxygenase (AlkB) from Acinetobacter johnsonii JNU01) and the substrate, polystyrene. A robust understanding of this mechanism could lead to potential development of a widespread solution that can mitigate polystyrene pollution. This paper will review the problems posed by polystyrene, benefits of biodegradation, current research into plausible enzymes, the specific characteristics of the JNU01 AlkB enzyme, and conclude with a computational docking experiment that demonstrates the interaction between the JN01 AlkB enzyme and polystyrene molecule. This study concluded that the most likely mechanism by which polystyrene is degraded enzymatically is through backbone cleavage, in which the enzyme hydrolyzes the carbon-carbon backbone in order to depolymerize the molecule, and allowing for subsequent styrene monomer degradation.
References
Agency for Toxic Substances and Disease Registry (US). (2010, November). Toxicological Profile for Styrene. Nih.gov; Agency for Toxic Substances and Disease Registry (US). https://www.ncbi.nlm.nih.gov/books/NBK601969/
Baby, A., Tretsiakova‐McNally, S., Joseph, P., Zhang, J., & Arun, M. (2024). The Effects of Nitrogen‐Containing Monomers on the Thermal Degradation and Combustion Attributes of Polystyrenes Chemically Modified With Phosphonate Groups. Macromolecular Materials and Engineering. https://doi.org/10.1002/mame.202300432
Bachman, J. (2013). Site-directed mutagenesis. Methods in Enzymology, 529, 241–248. https://doi.org/10.1016/B978-0-12-418687-3.00019-7
Britannica. (2016). Polymerization | chemical reaction. In Encyclopædia Britannica. https://www.britannica.com/science/polymerization
Cleaner Oceans Foundation. (n.d.). POLYSTYRENE. Www.blue-Growth.org. https://www.blue-growth.org/Plastics_Waste_Toxins_Pollution/Polystyrene.htm
Crabo, A. G., Singh, B., Nguyen, T., Emami, S., Gassner, G. T., & Sazinsky, M. H. (2017). Structure and biochemistry of phenylacetaldehyde dehydrogenase from the Pseudomonas putida S12 styrene catabolic pathway. Archives of Biochemistry and Biophysics, 616, 47–58. https://doi.org/10.1016/j.abb.2017.01.011
Dar, S. A., Dar, S. A., Alam, M., Dwivedi, A., & MD Saquib. (2016). Comparative Weld-able Plastics. International Journal for Scientific Research and Development, 4(2), 1402–1405. https://www.ijsrd.com/Article.php?manuscript=IJSRDV4I21309
Data, P. (2017). RCSB PDB - 2FD8: Crystal Structure of AlkB in complex with Fe(II), 2-oxoglutarate, and methylated trinucleotide T-meA-T. Rcsb.org. https://www.rcsb.org/structure/2FD8
Dragosits, M., & Mattanovich, D. (2013). Adaptive laboratory evolution – principles and applications for biotechnology. Microbial Cell Factories, 12(1), 64. https://doi.org/10.1186/1475-2859-12-64
Engineered Foam Products. (n.d.). Foam For Construction | EPS Foam. Engineered Foam Products. https://www.engineeredfoamproducts.com/industries/construction/
Espina, G., Atalah, J., & Blamey, J. M. (2021). Extremophilic Oxidoreductases for the Industry: Five Successful Examples With Promising Projections. Frontiers in Bioengineering and Biotechnology, 9, 710035. https://doi.org/10.3389/fbioe.2021.710035
Gassner, G. (2019). The styrene monooxygenase system. 423–453. https://doi.org/10.1016/bs.mie.2019.03.019
Guo, X., Zhang, J., Han, L., Lee, J., Williams, S. C., Forsberg, A., Xu, Y., Austin, R. N., & Feng, L. (2023). Structure and mechanism of the alkane-oxidizing enzyme AlkB. Nature Communications, 14(1), 2180. https://doi.org/10.1038/s41467-023-37869-z
Hopkins, M. (2023, June 1). Biodegradability: What Are The 3 Categories? Locus Ingredients. https://locusingredients.com/learning-center/3-categories-biodegradability/
Hou, L., & Majumder, E. L.-W. . (2021). Potential for and Distribution of Enzymatic Biodegradation of Polystyrene by Environmental Microorganisms. Materials, 14(3), 503. https://doi.org/10.3390/ma14030503
Huang, Z., Shanmugam, M., Liu, Z., Brookfield, A., Bennett, E. L., Guan, R., Vega Herrera, D. E., Lopez-Sanchez, J. A., Slater, A. G., McInnes, E. J. L., Qi, X., & Xiao, J. (2022). Chemical Recycling of Polystyrene to Valuable Chemicals via Selective Acid-Catalyzed Aerobic Oxidation under Visible Light. Journal of the American Chemical Society, 144(14), 6532–6542. https://doi.org/10.1021/jacs.2c01410
Hudson, A. (2023, January 20). Exiguobacterium degradation of polystyrene: Enlisting bacteria in the war against plastic. Research Outreach. https://researchoutreach.org/articles/exiguobacterium-degradation-polystyrene-enlisting-bacteria-war-plastic/
Isowall. (2018, April 26). A Brief History of Polystyrene. Isowall Group. https://isowall.co.za/a-brief-history-of-polystyrene/
Izdebska, J. (2016). Thermal Degradation - an overview | ScienceDirect Topics. Www.sciencedirect.com. https://www.sciencedirect.com/topics/engineering/thermal-degradation
Jaynes, C. H. (2025, July 11). Millions of Tons of Tiny Plastic Particles Are Polluting the Ocean, Study Finds. EcoWatch. https://www.ecowatch.com/plastic-pollution-oceans-nanoplastics.html
Joel, & Li, Z. (2022). Styrene Oxide Isomerase Catalyzed Meinwald Rearrangement Reaction: Discovery and Application in Single-Step and One-Pot Cascade Reactions. Organic Process Research & Development, 26(7), 1960–1970. https://doi.org/10.1021/acs.oprd.1c00473
Joho, Y., Vongsouthi, V., Gomez, C., Larsen, J. S., Ardevol, A., & Jackson, C. J. (2024). Improving plastic degrading enzymes via directed evolution. Protein Engineering, Design and Selection, 37, gzae009. https://doi.org/10.1093/protein/gzae009
Khairul Anuar, N. F. S., Huyop, F., Ur-Rehman, G., Abdullah, F., Normi, Y. M., Sabullah, M. K., & Abdul Wahab, R. (2022). An Overview into Polyethylene Terephthalate (PET) Hydrolases and Efforts in Tailoring Enzymes for Improved Plastic Degradation. International Journal of Molecular Sciences, 23(20), 12644. https://doi.org/10.3390/ijms232012644
Kim, H. R., Lee, H. M., Jeon, E., Yu, H. C., Lee, S., Li, J., & Kim, D.-H. (2019). Biodegradation of Polystyrene by Pseudomonas sp. Isolated from the Gut of Superworms. Chemrxiv.org. https://doi.org/10.26434/chemrxiv.11295296.v1
Kim, H.-W., Jo, J. H., Kim, Y.-B., Le, T.-K., Cho, C.-W., Yun, C.-H., Chi, W. S., & Yeom, S.-J. (2021). Biodegradation of polystyrene by bacteria from the soil in common environments. Journal of Hazardous Materials, 416, 126239. https://doi.org/10.1016/j.jhazmat.2021.126239
Liu, J., Ikura, R., Yamaoka, K., Sugawara, A., Takahashi, Y., Kure, B., Takenaka, N., Park, J., Uyama, H., & Takashima, Y. (2024). Exploring enzymatic degradation, reinforcement, recycling, and upcycling of poly(ester)s-poly(urethane) with movable crosslinks. Chem, 102327. https://doi.org/10.1016/j.chempr.2024.09.026
Lucas, A. (2014, May 27). Styrene and polystyrene foam 101. Toxic-Free Future. https://toxicfreefuture.org/blog/styrene-and-styrofoam-101-2/
Mendes, E., Beatriz, M., Ferreira, G., Springer, M. V., Martins, L., & Adilson, J. (2023). Study of the polystyrene degradation in water using nanoparticle tracking analysis (NTA). Tecnologia Em Metalurgia Materiais E Mineração, 20, e2347–e2347. https://doi.org/10.4322/2176-1523.20222347
Moravek. (2024, March 19). The Dangers of Chemical Compound Degradation. Moravek, Inc. https://www.moravek.com/the-dangers-of-chemical-compound-degradation/
National Research Council (US) Committee on Health Effects of Waste Incineration. (2012). Incineration Processes and Environmental Releases. Nih.gov; National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK233627/
Nie, Y., Chi, C.-Q., Fang, H., Liang, J.-L., Lu, S.-L., Lai, G.-L., Tang, Y.-Q., & Wu, X.-L. (2014). Diverse alkane hydroxylase genes in microorganisms and environments. Scientific Reports, 4(1). https://doi.org/10.1038/srep04968
Oelschlägel, M., Zimmerling, J., & Tischler, D. (2018). A Review: The Styrene Metabolizing Cascade of Side-Chain Oxygenation as Biotechnological Basis to Gain Various Valuable Compounds. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00490
Open Chemistry. (2025). Avogadro 2 | Open Chemistry. Openchemistry.org. https://www.openchemistry.org/projects/avogadro2/
Otto, K., Hofstetter, K., Röthlisberger, M., Witholt, B., & Schmid, A. (2004). Biochemical Characterization of StyAB from Pseudomonas sp. Strain VLB120 as a Two-Component Flavin-Diffusible Monooxygenase. Journal of Bacteriology, 186(16), 5292–5302. https://doi.org/10.1128/jb.186.16.5292-5302.2004
Park, S., Shou, W., Makatura, L., Matusik, W., & Fu, K. (Kelvin). (2022). 3D Printing of Polymer composites: Materials, processes, and Applications. Matter, 5(1), 43–76. https://doi.org/10.1016/j.matt.2021.10.018
Payne, L. (2024, April 11). Biodegradability | Definition, Process, Examples, Plastics, Composting, & Facts | Britannica. Www.britannica.com. https://www.britannica.com/technology/biodegradability
Plastic Biodegradation DB - Proteins. (2021). Plasticdb.org. http://plasticdb.org/proteins_00111
PubChem. (2004, September 16). Styrene. Pubchem.ncbi.nlm.nih.gov. https://pubchem.ncbi.nlm.nih.gov/compound/Styrene
Rajakumara, E., Saniya, D., Bajaj, P., Rajeshwari, R., Giri, J., & Davari, M. D. (2022). Hijacking Chemical Reactions of P450 Enzymes for Altered Chemical Reactions and Asymmetric Synthesis. International Journal of Molecular Sciences, 24(1), 214. https://doi.org/10.3390/ijms24010214
Samir, A. (2022). Recent advances in biodegradable polymers for sustainable applications. Npj Materials Degradation, 6(1). https://doi.org/10.1038/s41529-022-00277-7
TAN, K. M., MOHD FAUZI, N. A., MOHD KASSIM, A. S., A RAZAK, A. H., & KAMARUDIN, K. R. (2021). Isolation and Identification of Polystyrene Degrading Bacteria from Zophobas morio’s Gut. Walailak Journal of Science and Technology (WJST), 18(8). https://doi.org/10.48048/wjst.2021.9118
Temporiti, M. E. E., Nicola, L., Nielsen, E., & Tosi, S. (2022). Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms, 10(6), 1180. https://doi.org/10.3390/microorganisms10061180
The Biology Project. (2024). Amino Acids - Threonine. Arizona.edu. https://biology.arizona.edu/biochemistry/problem_sets/aa/Threonine.html
The Biology Project. (2025). Amino Acids - Tyrosine. Arizona.edu. https://biology.arizona.edu/biochemistry/problem_sets/aa/Tyrosine.html
The Editors of Encyclopedia Britannica. (2019). Styrene | chemical compound. In Encyclopædia Britannica. https://www.britannica.com/science/styrene
Torres Pazmiño, D. E., Winkler, M., Glieder, A., & Fraaije, M. W. (2010). Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications. Journal of Biotechnology, 146(1-2), 9–24. https://doi.org/10.1016/j.jbiotec.2010.01.021
Training and Event Registration: Introduction to Autodock and Autodock Tools. (2025). Lsu.edu. https://training.lsu.edu/ViewCourse.aspx?wid=1689
UCSF ChimeraX Home Page. (n.d.). Www.cgl.ucsf.edu. https://www.cgl.ucsf.edu/chimerax/
Vasarhelyi, K. (2023). The impact of plastic on climate change. Environmental Center; University of Colorado Boulder. https://www.colorado.edu/ecenter/2023/12/15/impact-plastic-climate-change
Yeom, S.-J., Le, T.-K., & Yun, C.-H. (2021). P450-driven plastic-degrading synthetic bacteria. Trends in Biotechnology, 40(2). https://doi.org/10.1016/j.tibtech.2021.06.003
Yousif, E., & Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus, 2(1). https://doi.org/10.1186/2193-1801-2-398
Yu, B., Edstrom, W. C., Benach, J., Hamuro, Y., Weber, P. C., Gibney, B. R., & Hunt, J. F. (2006). Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB. Nature, 439(7078), 879–884. https://doi.org/10.1038/nature04561
Zhang, Y., Pedersen, J. N., Eser, B. E., & Guo, Z. (2022). Biodegradation of Polyethylene and polystyrene: from Microbial Deterioration to Enzyme Discovery. Biotechnology Advances, 60(107991), 107991. https://doi.org/10.1016/j.biotechadv.2022.107991
Zhu, B., Wang, D., & Wei, N. (2021). Enzyme Discovery and Engineering for Sustainable Plastic Recycling. Trends in Biotechnology, 40(1). https://doi.org/10.1016/j.tibtech.2021.02.008
Downloads
Posted
Categories
License
Copyright (c) 2025 Tvisha Yadiki

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.