Preprint / Version 1

Investigating the Enzymatic Mechanism in Polystyrene Degradation: The Computational Modeling Approach

##article.authors##

  • Tvisha Yadiki Wakeland High School

DOI:

https://doi.org/10.58445/rars.2820

Keywords:

Styrofoam, Computational modeling, Enzymatic degradation, Biodegradation

Abstract

Polystyrene, commonly known as Styrofoam, poses an urgent problem in today’s environmental context. The material resists degradation, allowing it to accumulate in aquatic environments and indirectly enter the food chain as microplastics. While current research has focused on the merits of biodegrading this material, and several microorganisms have been identified to have this capability, the specific enzymatic mechanism through which degradation occurs has not been identified. This research aims to identify a potential mechanism between an identified enzyme (alkane-1-monooxygenase (AlkB) from Acinetobacter johnsonii JNU01) and the substrate, polystyrene. A robust understanding of this mechanism could lead to potential development of a widespread solution that can mitigate polystyrene pollution. This paper will review the problems posed by polystyrene, benefits of biodegradation, current research into plausible enzymes, the specific characteristics of the JNU01 AlkB enzyme, and conclude with a computational docking experiment that demonstrates the interaction between the JN01 AlkB enzyme and polystyrene molecule. This study concluded that the most likely mechanism by which polystyrene is degraded enzymatically is through backbone cleavage, in which the enzyme hydrolyzes the carbon-carbon backbone in order to depolymerize the molecule, and allowing for subsequent styrene monomer degradation.

References

Agency for Toxic Substances and Disease Registry (US). (2010, November). Toxicological Profile for Styrene. Nih.gov; Agency for Toxic Substances and Disease Registry (US). https://www.ncbi.nlm.nih.gov/books/NBK601969/

Baby, A., Tretsiakova‐McNally, S., Joseph, P., Zhang, J., & Arun, M. (2024). The Effects of Nitrogen‐Containing Monomers on the Thermal Degradation and Combustion Attributes of Polystyrenes Chemically Modified With Phosphonate Groups. Macromolecular Materials and Engineering. https://doi.org/10.1002/mame.202300432

Bachman, J. (2013). Site-directed mutagenesis. Methods in Enzymology, 529, 241–248. https://doi.org/10.1016/B978-0-12-418687-3.00019-7

Britannica. (2016). Polymerization | chemical reaction. In Encyclopædia Britannica. https://www.britannica.com/science/polymerization

Cleaner Oceans Foundation. (n.d.). POLYSTYRENE. Www.blue-Growth.org. https://www.blue-growth.org/Plastics_Waste_Toxins_Pollution/Polystyrene.htm

Crabo, A. G., Singh, B., Nguyen, T., Emami, S., Gassner, G. T., & Sazinsky, M. H. (2017). Structure and biochemistry of phenylacetaldehyde dehydrogenase from the Pseudomonas putida S12 styrene catabolic pathway. Archives of Biochemistry and Biophysics, 616, 47–58. https://doi.org/10.1016/j.abb.2017.01.011

Dar, S. A., Dar, S. A., Alam, M., Dwivedi, A., & MD Saquib. (2016). Comparative Weld-able Plastics. International Journal for Scientific Research and Development, 4(2), 1402–1405. https://www.ijsrd.com/Article.php?manuscript=IJSRDV4I21309

Data, P. (2017). RCSB PDB - 2FD8: Crystal Structure of AlkB in complex with Fe(II), 2-oxoglutarate, and methylated trinucleotide T-meA-T. Rcsb.org. https://www.rcsb.org/structure/2FD8

Dragosits, M., & Mattanovich, D. (2013). Adaptive laboratory evolution – principles and applications for biotechnology. Microbial Cell Factories, 12(1), 64. https://doi.org/10.1186/1475-2859-12-64

Engineered Foam Products. (n.d.). Foam For Construction | EPS Foam. Engineered Foam Products. https://www.engineeredfoamproducts.com/industries/construction/

Espina, G., Atalah, J., & Blamey, J. M. (2021). Extremophilic Oxidoreductases for the Industry: Five Successful Examples With Promising Projections. Frontiers in Bioengineering and Biotechnology, 9, 710035. https://doi.org/10.3389/fbioe.2021.710035

Gassner, G. (2019). The styrene monooxygenase system. 423–453. https://doi.org/10.1016/bs.mie.2019.03.019

Guo, X., Zhang, J., Han, L., Lee, J., Williams, S. C., Forsberg, A., Xu, Y., Austin, R. N., & Feng, L. (2023). Structure and mechanism of the alkane-oxidizing enzyme AlkB. Nature Communications, 14(1), 2180. https://doi.org/10.1038/s41467-023-37869-z

Hopkins, M. (2023, June 1). Biodegradability: What Are The 3 Categories? Locus Ingredients. https://locusingredients.com/learning-center/3-categories-biodegradability/

Hou, L., & Majumder, E. L.-W. . (2021). Potential for and Distribution of Enzymatic Biodegradation of Polystyrene by Environmental Microorganisms. Materials, 14(3), 503. https://doi.org/10.3390/ma14030503

Huang, Z., Shanmugam, M., Liu, Z., Brookfield, A., Bennett, E. L., Guan, R., Vega Herrera, D. E., Lopez-Sanchez, J. A., Slater, A. G., McInnes, E. J. L., Qi, X., & Xiao, J. (2022). Chemical Recycling of Polystyrene to Valuable Chemicals via Selective Acid-Catalyzed Aerobic Oxidation under Visible Light. Journal of the American Chemical Society, 144(14), 6532–6542. https://doi.org/10.1021/jacs.2c01410

Hudson, A. (2023, January 20). Exiguobacterium degradation of polystyrene: Enlisting bacteria in the war against plastic. Research Outreach. https://researchoutreach.org/articles/exiguobacterium-degradation-polystyrene-enlisting-bacteria-war-plastic/

Isowall. (2018, April 26). A Brief History of Polystyrene. Isowall Group. https://isowall.co.za/a-brief-history-of-polystyrene/

Izdebska, J. (2016). Thermal Degradation - an overview | ScienceDirect Topics. Www.sciencedirect.com. https://www.sciencedirect.com/topics/engineering/thermal-degradation

Jaynes, C. H. (2025, July 11). Millions of Tons of Tiny Plastic Particles Are Polluting the Ocean, Study Finds. EcoWatch. https://www.ecowatch.com/plastic-pollution-oceans-nanoplastics.html

Joel, & Li, Z. (2022). Styrene Oxide Isomerase Catalyzed Meinwald Rearrangement Reaction: Discovery and Application in Single-Step and One-Pot Cascade Reactions. Organic Process Research & Development, 26(7), 1960–1970. https://doi.org/10.1021/acs.oprd.1c00473

Joho, Y., Vongsouthi, V., Gomez, C., Larsen, J. S., Ardevol, A., & Jackson, C. J. (2024). Improving plastic degrading enzymes via directed evolution. Protein Engineering, Design and Selection, 37, gzae009. https://doi.org/10.1093/protein/gzae009

Khairul Anuar, N. F. S., Huyop, F., Ur-Rehman, G., Abdullah, F., Normi, Y. M., Sabullah, M. K., & Abdul Wahab, R. (2022). An Overview into Polyethylene Terephthalate (PET) Hydrolases and Efforts in Tailoring Enzymes for Improved Plastic Degradation. International Journal of Molecular Sciences, 23(20), 12644. https://doi.org/10.3390/ijms232012644

Kim, H. R., Lee, H. M., Jeon, E., Yu, H. C., Lee, S., Li, J., & Kim, D.-H. (2019). Biodegradation of Polystyrene by Pseudomonas sp. Isolated from the Gut of Superworms. Chemrxiv.org. https://doi.org/10.26434/chemrxiv.11295296.v1

Kim, H.-W., Jo, J. H., Kim, Y.-B., Le, T.-K., Cho, C.-W., Yun, C.-H., Chi, W. S., & Yeom, S.-J. (2021). Biodegradation of polystyrene by bacteria from the soil in common environments. Journal of Hazardous Materials, 416, 126239. https://doi.org/10.1016/j.jhazmat.2021.126239

Liu, J., Ikura, R., Yamaoka, K., Sugawara, A., Takahashi, Y., Kure, B., Takenaka, N., Park, J., Uyama, H., & Takashima, Y. (2024). Exploring enzymatic degradation, reinforcement, recycling, and upcycling of poly(ester)s-poly(urethane) with movable crosslinks. Chem, 102327. https://doi.org/10.1016/j.chempr.2024.09.026

Lucas, A. (2014, May 27). Styrene and polystyrene foam 101. Toxic-Free Future. https://toxicfreefuture.org/blog/styrene-and-styrofoam-101-2/

Mendes, E., Beatriz, M., Ferreira, G., Springer, M. V., Martins, L., & Adilson, J. (2023). Study of the polystyrene degradation in water using nanoparticle tracking analysis (NTA). Tecnologia Em Metalurgia Materiais E Mineração, 20, e2347–e2347. https://doi.org/10.4322/2176-1523.20222347

Moravek. (2024, March 19). The Dangers of Chemical Compound Degradation. Moravek, Inc. https://www.moravek.com/the-dangers-of-chemical-compound-degradation/

National Research Council (US) Committee on Health Effects of Waste Incineration. (2012). Incineration Processes and Environmental Releases. Nih.gov; National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK233627/

Nie, Y., Chi, C.-Q., Fang, H., Liang, J.-L., Lu, S.-L., Lai, G.-L., Tang, Y.-Q., & Wu, X.-L. (2014). Diverse alkane hydroxylase genes in microorganisms and environments. Scientific Reports, 4(1). https://doi.org/10.1038/srep04968

Oelschlägel, M., Zimmerling, J., & Tischler, D. (2018). A Review: The Styrene Metabolizing Cascade of Side-Chain Oxygenation as Biotechnological Basis to Gain Various Valuable Compounds. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00490

Open Chemistry. (2025). Avogadro 2 | Open Chemistry. Openchemistry.org. https://www.openchemistry.org/projects/avogadro2/

Otto, K., Hofstetter, K., Röthlisberger, M., Witholt, B., & Schmid, A. (2004). Biochemical Characterization of StyAB from Pseudomonas sp. Strain VLB120 as a Two-Component Flavin-Diffusible Monooxygenase. Journal of Bacteriology, 186(16), 5292–5302. https://doi.org/10.1128/jb.186.16.5292-5302.2004

Park, S., Shou, W., Makatura, L., Matusik, W., & Fu, K. (Kelvin). (2022). 3D Printing of Polymer composites: Materials, processes, and Applications. Matter, 5(1), 43–76. https://doi.org/10.1016/j.matt.2021.10.018

Payne, L. (2024, April 11). Biodegradability | Definition, Process, Examples, Plastics, Composting, & Facts | Britannica. Www.britannica.com. https://www.britannica.com/technology/biodegradability

Plastic Biodegradation DB - Proteins. (2021). Plasticdb.org. http://plasticdb.org/proteins_00111

PubChem. (2004, September 16). Styrene. Pubchem.ncbi.nlm.nih.gov. https://pubchem.ncbi.nlm.nih.gov/compound/Styrene

Rajakumara, E., Saniya, D., Bajaj, P., Rajeshwari, R., Giri, J., & Davari, M. D. (2022). Hijacking Chemical Reactions of P450 Enzymes for Altered Chemical Reactions and Asymmetric Synthesis. International Journal of Molecular Sciences, 24(1), 214. https://doi.org/10.3390/ijms24010214

Samir, A. (2022). Recent advances in biodegradable polymers for sustainable applications. Npj Materials Degradation, 6(1). https://doi.org/10.1038/s41529-022-00277-7

TAN, K. M., MOHD FAUZI, N. A., MOHD KASSIM, A. S., A RAZAK, A. H., & KAMARUDIN, K. R. (2021). Isolation and Identification of Polystyrene Degrading Bacteria from Zophobas morio’s Gut. Walailak Journal of Science and Technology (WJST), 18(8). https://doi.org/10.48048/wjst.2021.9118

Temporiti, M. E. E., Nicola, L., Nielsen, E., & Tosi, S. (2022). Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms, 10(6), 1180. https://doi.org/10.3390/microorganisms10061180

The Biology Project. (2024). Amino Acids - Threonine. Arizona.edu. https://biology.arizona.edu/biochemistry/problem_sets/aa/Threonine.html

The Biology Project. (2025). Amino Acids - Tyrosine. Arizona.edu. https://biology.arizona.edu/biochemistry/problem_sets/aa/Tyrosine.html

The Editors of Encyclopedia Britannica. (2019). Styrene | chemical compound. In Encyclopædia Britannica. https://www.britannica.com/science/styrene

Torres Pazmiño, D. E., Winkler, M., Glieder, A., & Fraaije, M. W. (2010). Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications. Journal of Biotechnology, 146(1-2), 9–24. https://doi.org/10.1016/j.jbiotec.2010.01.021

Training and Event Registration: Introduction to Autodock and Autodock Tools. (2025). Lsu.edu. https://training.lsu.edu/ViewCourse.aspx?wid=1689

UCSF ChimeraX Home Page. (n.d.). Www.cgl.ucsf.edu. https://www.cgl.ucsf.edu/chimerax/

Vasarhelyi, K. (2023). The impact of plastic on climate change. Environmental Center; University of Colorado Boulder. https://www.colorado.edu/ecenter/2023/12/15/impact-plastic-climate-change

Yeom, S.-J., Le, T.-K., & Yun, C.-H. (2021). P450-driven plastic-degrading synthetic bacteria. Trends in Biotechnology, 40(2). https://doi.org/10.1016/j.tibtech.2021.06.003

Yousif, E., & Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus, 2(1). https://doi.org/10.1186/2193-1801-2-398

Yu, B., Edstrom, W. C., Benach, J., Hamuro, Y., Weber, P. C., Gibney, B. R., & Hunt, J. F. (2006). Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB. Nature, 439(7078), 879–884. https://doi.org/10.1038/nature04561

Zhang, Y., Pedersen, J. N., Eser, B. E., & Guo, Z. (2022). Biodegradation of Polyethylene and polystyrene: from Microbial Deterioration to Enzyme Discovery. Biotechnology Advances, 60(107991), 107991. https://doi.org/10.1016/j.biotechadv.2022.107991

Zhu, B., Wang, D., & Wei, N. (2021). Enzyme Discovery and Engineering for Sustainable Plastic Recycling. Trends in Biotechnology, 40(1). https://doi.org/10.1016/j.tibtech.2021.02.008

Downloads

Posted

2025-07-27