Preprint / Version 1

Determining the Impact of NK Cells on Each Stage of Cancer Progression

##article.authors##

  • Anya Gupta Mountain View High School

DOI:

https://doi.org/10.58445/rars.3052

Keywords:

Natural Killer (NK) cells, effector to target (E:T), cytokines, reactive oxygen species (ROS), cytotoxicity, tumor microenvironment, apoptosis

Abstract

Natural Killer (NK) cells are crucial regulators of anti-tumor immunity, but their activity is importantly shaped by the tumor microenvironment across diverse cancer types. This study investigates how variations in cytokine and chemokine presence, ROS dynamics, and effector-to-target (E:T) ratios influence NK cell phenotype and cytotoxic function in Lung, Breast, Ovarian, Gastric, Renal, Colon & Colorectal cancers. Using experimental killing essays and patient data, this paper demonstrates that higher E:T ratios and a predominance of mature NK cells are closely linked to increased cancer cell death. This data also suggests that anti-inflammatory cytokines (IL-12, IFN-γ) enhance NK cell function while immunosuppressive cytokines (IL-10, IL-6) and elevated ROS levels suppress cytotoxicity. Single-cell and pathway data highlight how the balance of these molecules vary across tumor microenvironments. The findings support the development of NK cell based therapies aimed at restoring cytotoxicity and anti-tumor immunity, providing insight into the interplay between cytokines, ROS, and NK cell activity. 

References

Coënon, L., Geindreau, M., Ghiringhelli, F. et al. Natural Killer cells at the frontline in the fight against cancer. Cell Death Dis 15, 614 (2024). https://doi.org/10.1038/s41419-024-06976-0

Paul S, Lal G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Front Immunol. 2017 Sep 13;8:1124. doi: 10.3389/fimmu.2017.01124. PMID: 28955340; PMCID: PMC5601256.

Prager I, Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J Leukoc Biol. 2019 Jun;105(6):1319-1329. doi: 10.1002/JLB.MR0718-269R. Epub 2019 May 20. PMID: 31107565.

Chen S, Zhu H, Jounaidi Y. Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther. 2024 Nov 8;9(1):302. doi: 10.1038/s41392-024-02005-w. PMID: 39511139; PMCID: PMC11544004.

Kennel KB, Greten FR. Immune cell - produced ROS and their impact on tumor growth and metastasis. Redox Biol. 2021 Jun;42:101891. doi: 10.1016/j.redox.2021.101891. Epub 2021 Feb 5. PMID: 33583736; PMCID: PMC8113043.

Liu S, Huang B, Cao J, Wang Y, Xiao H, Zhu Y, Zhang H. ROS fine-tunes the function and fate of immune cells. Int Immunopharmacol. 2023 Jun;119:110069. doi: 10.1016/j.intimp.2023.110069. Epub 2023 May 5. PMID: 37150014.

Shah R, Ibis B, Kashyap M, Boussiotis VA. The role of ROS in tumor infiltrating immune cells and cancer immunotherapy. Metabolism. 2024 Feb;151:155747. doi: 10.1016/j.metabol.2023.155747. Epub 2023 Nov 30. PMID: 38042522; PMCID: PMC10872310.

Tavassolifar MJ, Vodjgani M, Salehi Z, Izad M. The Influence of Reactive Oxygen Species in the Immune System and Pathogenesis of Multiple Sclerosis. Autoimmune Dis. 2020 Jun 25;2020:5793817. doi: 10.1155/2020/5793817. PMID: 32789026; PMCID: PMC7334772.

Manoharan RR, Prasad A, Pospíšil P, Kzhyshkowska J. ROS signaling in innate immunity via oxidative protein modifications. Front Immunol. 2024 Mar 7;15:1359600. doi: 10.3389/fimmu.2024.1359600. PMID: 38515749; PMCID: PMC10954773.

Kotsafti A, Scarpa M, Castagliuolo I, Scarpa M. Reactive Oxygen Species and Antitumor Immunity-From Surveillance to Evasion. Cancers (Basel). 2020 Jul 1;12(7):1748. doi: 10.3390/cancers12071748. PMID: 32630174; PMCID: PMC7409327.

Shen, Z., Meng, X., Rautela, J. et al. Adjusting the scope of natural killer cells in cancer therapy. Cell Mol Immunol 22, 699–711 (2025). https://doi.org/10.1038/s41423-025-01297-4

Kuznetsova AV, Glukhova XA, Beletsky IP, Ivanov AA. NK cell activity in the tumor microenvironment. Front Cell Dev Biol. 2025 May 30;13:1609479. doi: 10.3389/fcell.2025.1609479. PMID: 40519272; PMCID: PMC12162653.

Lopez-Vergès S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, Norris PJ, Nixon DF, Lanier LL. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood. 2010 Nov 11;116(19):3865-74. doi: 10.1182/blood-2010-04-282301. Epub 2010 Aug 23. PMID: 20733159; PMCID: PMC2981540.

Li F, Gao C, Huang Y, Qiao Y, Xu H, Liu S, Wu H. Unraveling the breast cancer tumor microenvironment: crucial factors influencing natural killer cell function and therapeutic strategies. Int J Biol Sci. 2025 Mar 24;21(6):2606-2628. doi: 10.7150/ijbs.108803. PMID: 40303301; PMCID: PMC12035885.

Coppola A, Arriga R, Lauro D, Del Principe MI, Buccisano F, Maurillo L, Palomba P, Venditti A, Sconocchia G. NK Cell Inflammation in the Clinical Outcome of Colorectal Carcinoma. Front Med (Lausanne). 2015 May 26;2:33. doi: 10.3389/fmed.2015.00033. PMID: 26131447; PMCID: PMC4469113.

Chen C, Wang Z, Ding Y, Qin Y. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front Immunol. 2023 Feb 10;14:1133308. doi: 10.3389/fimmu.2023.1133308. PMID: 36845131; PMCID: PMC9950271.

Zhang H, Wang J, Li F. Modulation of natural killer cell exhaustion in the lungs: the key components from lung microenvironment and lung tumor microenvironment. Front Immunol. 2023 Nov 6;14:1286986. doi: 10.3389/fimmu.2023.1286986. Erratum in: Front Immunol. 2024 Jul 30;15:1467723. doi: 10.3389/fimmu.2024.1467723. PMID: 38022613; PMCID: PMC10657845.

Melaiu O, Lucarini V, Cifaldi L, Fruci D. Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors. Front Immunol. 2020 Jan 21;10:3038. doi: 10.3389/fimmu.2019.03038. PMID: 32038612; PMCID: PMC6985149.

Stojanovic A, Correia MP, Cerwenka A. Shaping of NK cell responses by the tumor microenvironment. Cancer Microenviron. 2013 Aug;6(2):135-46. doi: 10.1007/s12307-012-0125-8. Epub 2012 Dec 16. PMID: 23242671; PMCID: PMC3717064.

Zeng Y, Lv X, Du J. Natural killer cell‑based immunotherapy for lung cancer: Challenges and perspectives (Review). Oncol Rep. 2021 Nov;46(5):232. doi: 10.3892/or.2021.8183. Epub 2021 Sep 9. PMID: 34498710; PMCID: PMC8444189.

Bald T, Krummel MF, Smyth MJ, Barry KC. The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies. Nat Immunol. 2020 Aug;21(8):835-847. doi: 10.1038/s41590-020-0728-z. Epub 2020 Jul 20. PMID: 32690952; PMCID: PMC8406687.

Larsen SK, Gao Y, Basse PH. NK cells in the tumor microenvironment. Crit Rev Oncog. 2014;19(1-2):91-105. doi: 10.1615/critrevoncog.2014011142. PMID: 24941376; PMCID: PMC4062922.

Rezvani K, Rouce R, Liu E, Shpall E. Engineering Natural Killer Cells for Cancer Immunotherapy. Mol Ther. 2017 Aug 2;25(8):1769-1781. doi: 10.1016/j.ymthe.2017.06.012. Epub 2017 Jun 28. PMID: 28668320; PMCID: PMC5542803.

Gergues M, Bari R, Koppisetti S, Gosiewska A, Kang L, Hariri RJ. Senescence, NK cells, and cancer: navigating the crossroads of aging and disease. Front Immunol. 2025 Apr 4;16:1565278. doi: 10.3389/fimmu.2025.1565278. PMID: 40255394; PMCID: PMC12006071.

Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 2021 Feb;18(2):85-100. doi: 10.1038/s41571-020-0426-7. Epub 2020 Sep 15. PMID: 32934330; PMCID: PMC8316981.

Re F, Staudacher C, Zamai L, Vecchio V, Bregni M. Killer cell Ig-like receptors ligand-mismatched, alloreactive natural killer cells lyse primary solid tumors. Cancer. 2006 Aug 1;107(3):640-8. doi: 10.1002/cncr.22002. PMID: 16804934.

Thacker G, Henry S, Nandi A, Debnath R, Singh S, Nayak A, Susnik B, Boone MM, Zhang Q, Kesmodel SB, Gumber S, Das GM, Kambayashi T, Dos Santos CO, Chakrabarti R. Immature natural killer cells promote progression of triple-negative breast cancer. Sci Transl Med. 2023 Mar 8;15(686):eabl4414. doi: 10.1126/scitranslmed.abl4414. Epub 2023 Mar 8. PMID: 36888695; PMCID: PMC10875969.

Downloads

Posted

2025-09-14