Mitochondrial Mutations and Athletic Endurance
A Review of Genetics, Energy, and Training
DOI:
https://doi.org/10.58445/rars.3606Keywords:
Mitochondrial DNA, Endurance performance, Oxidative phosphorylation, Heteroplasmy, Mitochondrial biogenesis, Exercise epigeneticsAbstract
Endurance performance relies on the sustained generation of adenosine triphosphate (ATP) through mitochondrial oxidative phosphorylation in skeletal muscle. Mitochondrial DNA (mtDNA), which encodes essential components of the electron transport chain, plays a critical role in determining mitochondrial efficiency and aerobic capacity. Mutations in mtDNA—ranging from point substitutions to large deletions—can impair ATP production, leading to exercise intolerance in severe cases and more subtle reductions in endurance performance in otherwise healthy individuals. In addition, naturally occurring mtDNA variation, including mitochondrial haplogroups and heteroplasmy, has been associated with interindividual differences in endurance capacity and training responsiveness. This review synthesizes current evidence on the genetic, molecular, and physiological mechanisms linking mtDNA mutations to endurance performance. It further examines how endurance training and environmental factors modulate mitochondrial function through mitochondrial biogenesis, nuclear–mitochondrial signaling, and epigenetic regulation of genes involved in energy metabolism. Advances in sequencing technologies and mitochondrial imaging have provided new insights into mutation burden, mitochondrial ultrastructure, and their relationship to fatigue resistance. Collectively, the literature indicates that mitochondrial genetics establish biological constraints on endurance performance, while training-induced adaptations and epigenetic mechanisms can partially compensate for these constraints. Understanding this interaction has important implications for athletic training, personalized exercise programs, and the early identification of mitochondrial dysfunction.
References
Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., & Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290(5806), 457–465. https://doi.org/10.1038/290457a0
DiMauro, S., & Schon, E. A. (2003). Mitochondrial respiratory-chain diseases. The New England Journal of Medicine, 348(26), 2656–2668. https://doi.org/10.1056/NEJMra022567
Egan, B., & Zierath, J. R. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metabolism, 17(2), 162–184. https://doi.org/10.1016/j.cmet.2012.12.012
Geiger, C., Needhamsen, M., Emanuelsson, E. B., Norrbom, J., Steindorf, K., Sundberg, C. J., Reitzner, S. M., & Lindholm, M. E. (2024). DNA methylation of exercise-responsive genes differs between trained and untrained men. BMC Biology, 22(1), Article 147. https://doi.org/10.1186/s12915-024-01938-6
Gorman, G. S., Schaefer, A. M., Ng, Y., Gomez, N., Blakely, E. L., Alston, C. L., Feeney, C., Horvath, R., Yu-Wai-Man, P., Chinnery, P. F., Taylor, R. W., Turnbull, D. M., & McFarland, R. (2015). Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Annals of Neurology, 77(5), 753–759. https://doi.org/10.1002/ana.24362
Harvey, N. R., Voisin, S., Lea, R. A., Yan, X., Benton, M. C., Papadimitriou, I. D., Jacques, M., Haupt, L. M., Ashton, K. J., Eynon, N., & Griffiths, L. R. (2020). Investigating the influence of mtDNA and nuclear encoded mitochondrial variants on high intensity interval training outcomes. Scientific Reports, 10(1), Article 11089. https://doi.org/10.1038/s41598-020-67870-1
Jeppesen, T. D. (2020). Aerobic exercise training in patients with mtDNA-related mitochondrial myopathy. Frontiers in Physiology, 11, Article 349. https://doi.org/10.3389/fphys.2020.00349
Kiiskilä, J., Jokelainen, J., Kytövuori, L., et al. (2021). Association of mitochondrial DNA haplogroups J and K with low response in exercise training among Finnish military conscripts. BMC Genomics, 22(1), Article 75. https://doi.org/10.1186/s12864-021-07383-x
Koopman, W. J. H., Willems, P. H. G. M., & Smeitink, J. A. M. (2012). Monogenic mitochondrial disorders. The New England Journal of Medicine, 366(12), 1132–1141. https://doi.org/10.1056/NEJMra1012478
Maruszak, A., Adamczyk, J. G., Gajewski, A., et al. (2014). Mitochondrial DNA variation is associated with elite athletic status in the Polish population. Scandinavian Journal of Medicine & Science in Sports, 24(2), 311–318. https://doi.org/10.1111/sms.12008
MedlinePlus Genetics. (2018). Mitochondrial DNA. U.S. National Library of Medicine. https://medlineplus.gov/genetics/chromosome/mitochondrial-dna/
Powers, S. K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M. P., & Hyatt, H. (2022). Exercise training and skeletal muscle antioxidant enzymes: An update. Antioxidants, 12(1), Article 39. https://doi.org/10.3390/antiox12010039
Ristow, M., Zarse, K., Oberbach, A., Klöting, N., Birringer, M., Kiehntopf, M., Stumvoll, M., Kahn, C. R., & Blüher, M. (2009). Antioxidants prevent health-promoting effects of physical exercise in humans. Proceedings of the National Academy of Sciences, 106(21), 8665–8670. https://doi.org/10.1073/pnas.0903485106
Schaefer, P. M., Rathi, K., Butic, A., Tan, W., Mitchell, K., & Wallace, D. C. (2022). Mitochondrial mutations alter endurance exercise response and determinants in mice. Proceedings of the National Academy of Sciences, 119(18), e2200549119. https://doi.org/10.1073/pnas.2200549119
Stefàno, E., Zampieri, M., & Manco, M. (2019). Is mitochondrial DNA profiling predictive for athletic performance? Genes, 10(11), Article 886. https://doi.org/10.3390/genes10110886
Taylor, R. W., & Turnbull, D. M. (2005). Mitochondrial DNA mutations in human disease. Nature Reviews Genetics, 6(5), 389–402. https://doi.org/10.1038/nrg1606
Tonkonogi, M., & Sahlin, K. (2000). Mitochondrial function and antioxidative defence in human muscle: Effects of endurance training and oxidative stress. The Journal of Physiology, 528(Pt 2), 379–388. https://doi.org/10.1111/j.1469-7793.2000.00379.x
Wallace, D. C. (1999). Mitochondrial diseases in man and mouse. Science, 283(5407), 1482–1488. https://doi.org/10.1126/science.283.5407.1482
Williamson, J., Hughes, C. M., Cobley, J. N., Davison, G. W., & Deighton, K. (2020). The mitochondria-targeted antioxidant MitoQ attenuates exercise-induced mitochondrial DNA damage. Free Radical Biology and Medicine, 161, 232–240. https://doi.org/10.1016/j.freeradbiomed.2020.10.314
Downloads
Posted
Categories
License
Copyright (c) 2026 Katie Song, Grace Kim

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.