The Human Microbiome Evaluated from an Ecological Perspective
DOI:
https://doi.org/10.58445/rars.3633Keywords:
Biology, Microbiome, EcologyAbstract
The human microbiome is incredibly diverse and plays an important role in human health. As more studies are done, more diseases are becoming increasingly linked to microbiome health. In this review, we discuss the microbiome from an ecological perspective, to help understand the processes of the microbiome and how we can apply ecological principles to further the advancement of medicine in this relatively new field of study. First, we go over the establishment of the microbiome and how it is influenced by environmental factors. Then we discuss the spatial dynamics of the gut microbiome and the implications if it is disturbed. Finally, we discuss current treatments for microbial related diseases, and look to how we can improve them in the future with a better understanding of the microbiome.
References
Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. (2012). Probiotic Mechanisms of Action. Annals of Nutrition and Metabolism, 61(2), 160–174. https://doi.org/10.1159/000342079
Bhattarai, S. K., Du, M., Zeamer, A. L., Morzfeld, B. M., Kellogg, T. D., Firat, K., Benjamin, A., Bean, J. M., Zimmerman, M., Mardi, G., Vilbrun, S. C., Walsh, K. F., Fitzgerald, D. W., Glickman, M. S., & Bucci, V. (2024). Commensal Antimicrobial Resistance Mediates Microbiome Resilience to Antibiotic Disruption. Science Translational Medicine, 16(730), eadi9711. https://doi.org/10.1126/scitranslmed.adi9711
Cao, X., Dong, A., Kang, G., Wang, X., Duan, L., Hou, H., Zhao, T., Wu, S., Liu, X., Huang, H., & Wu, R. (2022). Modeling spatial interaction networks of the gut microbiota. Gut Microbes, 14(1), 2106103. https://doi.org/10.1080/19490976.2022.2106103
Clarke, T. B., Davis, K. M., Lysenko, E. S., Zhou, A. Y., Yu, Y., & Weiser, J. N. (2010). Recognition of Peptidoglycan from the Microbiota by Nod1 Enhances Systemic Innate Immunity. Nature Medicine, 16(2), 228–231. https://doi.org/10.1038/nm.2087
Dapa, T., Wong, D. P. G. H., Vasquez, K. S., Xavier, K. B., Huang, K. C., & Good, B. H. (2023). Within-host evolution of the gut microbiome. Current Opinion in Microbiology, 71, 102258. https://doi.org/10.1016/j.mib.2022.102258
Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S. J., Berenjian, A., & Ghasemi, Y. (2019). Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods, 8(3), 92. https://doi.org/10.3390/foods8030092
Davenport, E. R., Sanders, J. G., Song, S. J., Amato, K. R., Clark, A. G., & Knight, R. (2017). The human microbiome in evolution. BMC Biology, 15, 127. https://doi.org/10.1186/s12915-017-0454-7
Gonzalez, A., Clemente, J. C., Shade, A., Metcalf, J. L., Song, S., Prithiviraj, B., Palmer, B. E., & Knight, R. (2011). Our microbial selves: What ecology can teach us. EMBO Reports, 12(8), 775–784. https://doi.org/10.1038/embor.2011.137
Hulse, S. V., Antonovics, J., Hood, M. E., & Bruns, E. L. (2023). Host-pathogen coevolution promotes the evolution of general, broad-spectrum resistance and reduces foreign pathogen spillover risk. bioRxiv, 2023.08.04.548430. https://doi.org/10.1101/2023.08.04.548430
Kadyan, S., Park, G., Singh, T. P., Patoine, C., Singar, S., Heise, T., Domeier, C., Ray, C., Kumar, M., Behare, P. V., Chakrabarty, P., Efron, P., Sheffler, J., & Nagpal, R. (2025). Microbiome-based therapeutics towards healthier aging and longevity. Genome Medicine, 17, 75. https://doi.org/10.1186/s13073-025-01493-x
Khoruts, A., & Sadowsky, M. J. (2016). Understanding the mechanisms of faecal microbiota transplantation. Nature Reviews. Gastroenterology & Hepatology, 13(9), 508–516. https://doi.org/10.1038/nrgastro.2016.98
Kuang, J., Zheng, X., & Jia, W. (2024). Investigating regional-specific gut microbial distribution: An uncharted territory in disease therapeutics. Protein & Cell, 16(8), 623–640. https://doi.org/10.1093/procel/pwae058
Latif, A., Shehzad, A., Niazi, S., Zahid, A., Ashraf, W., Iqbal, M. W., Rehman, A., Riaz, T., Aadil, R. M., Khan, I. M., Özogul, F., Rocha, J. M., Esatbeyoglu, T., & Korma, S. A. (2023). Probiotics: Mechanism of action, health benefits and their application in food industries. Frontiers in Microbiology, 14, 1216674. https://doi.org/10.3389/fmicb.2023.1216674
Liu, Y., Jarman, J. B., Low, Y. S., Augustijn, H. E., Huang, S., Chen, H., DeFeo, M. E., Sekiba, K., Hou, B.-H., Meng, X., Weakley, A. M., Cabrera, A. V., Zhou, Z., van Wezel, G., Medema, M. H., Ganesan, C., Pao, A. C., Gombar, S., & Dodd, D. (2023). A widely distributed gene cluster compensates for uricase loss in hominids. Cell, 186(16), 3400-3413.e20. https://doi.org/10.1016/j.cell.2023.06.010
Ma, Z., Zuo, T., Frey, N., & Rangrez, A. Y. (2024). A systematic framework for understanding the microbiome in human health and disease: From basic principles to clinical translation. Signal Transduction and Targeted Therapy, 9(1), 237. https://doi.org/10.1038/s41392-024-01946-6
Macklis, P., Adams, K., Kaffenberger, J., Kumar, P., Krispinsky, A., & Kaffenberger, B. (2020). The Association Between Oral Health and Skin Disease. The Journal of Clinical and Aesthetic Dermatology, 13(6), 48–53.
Moeller, A. H., Caro-Quintero, A., Mjungu, D., Georgiev, A. V., Lonsdorf, E. V., Muller, M. N., Pusey, A. E., Peeters, M., Hahn, B. H., & Ochman, H. (2016). Cospeciation of gut microbiota with hominids. Science, 353(6297), 380–382. https://doi.org/10.1126/science.aaf3951
Pereira, F. C., & Berry, D. (2017). Microbial nutrient niches in the gut. Environmental Microbiology, 19(4), 1366–1378. https://doi.org/10.1111/1462-2920.13659
Perez-Muñoz, M. E., Arrieta, M.-C., Ramer-Tait, A. E., & Walter, J. (2017). A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: Implications for research on the pioneer infant microbiome. Microbiome, 5, 48. https://doi.org/10.1186/s40168-017-0268-4
Plaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., & Gil, A. (2019). Mechanisms of Action of Probiotics. Advances in Nutrition, 10(Suppl 1), S49–S66. https://doi.org/10.1093/advances/nmy063
Rampelli, S., Pomstra, D., Barone, M., Fabbrini, M., Turroni, S., Candela, M., & Henry, A. G. (2025). Consumption of only wild foods induces large scale, partially persistent alterations to the gut microbiome. Scientific Reports, 15(1), 16593. https://doi.org/10.1038/s41598-025-00319-5
Shan, Y., Lee, M., & Chang, E. B. (2022). The Gut Microbiome and Inflammatory Bowel Diseases. Annual Review of Medicine, 73(Volume 73, 2022), 455–468. https://doi.org/10.1146/annurev-med-042320-021020
Suzuki, T. A., & Worobey, M. (2014). Geographical variation of human gut microbial composition. Biology Letters, 10(2), 20131037. https://doi.org/10.1098/rsbl.2013.1037
Voravuthikunchai, S. P., Bilasoi, S., & Supamala, O. (2006). Antagonistic activity against pathogenic bacteria by human vaginal lactobacilli. Anaerobe, 12(5–6), 221–226. https://doi.org/10.1016/j.anaerobe.2006.06.003
Wallace, B. D., Wang, H., Lane, K. T., Scott, J. E., Orans, J., Koo, J. S., Venkatesh, M., Jobin, C., Yeh, L.-A., Mani, S., & Redinbo, M. R. (2010). Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme. Science (New York, N.Y.), 330(6005), 831–835. https://doi.org/10.1126/science.1191175
Wang, S., Mu, L., Yu, C., He, Y., Hu, X., Jiao, Y., Xu, Z., You, S., Liu, S.-L., & Bao, H. (2024). Microbial collaborations and conflicts: Unraveling interactions in the gut ecosystem. Gut Microbes, 16(1), 2296603. https://doi.org/10.1080/19490976.2023.2296603
Wang, Y., Yu, Z., Ding, P., Lu, J., Mao, L., Ngiam, L., Yuan, Z., Engelstädter, J., Schembri, M. A., & Guo, J. (2023). Antidepressants can induce mutation and enhance persistence toward multiple antibiotics. Proceedings of the National Academy of Sciences of the United States of America, 120(5), e2208344120. https://doi.org/10.1073/pnas.2208344120
Weiss, A. S., Niedermeier, L. S., von Strempel, A., Burrichter, A. G., Ring, D., Meng, C., Kleigrewe, K., Lincetto, C., Hübner, J., & Stecher, B. (2023). Nutritional and host environments determine community ecology and keystone species in a synthetic gut bacterial community. Nature Communications, 14(1), 4780. https://doi.org/10.1038/s41467-023-40372-0
Xiong, R.-G., Li, J., Cheng, J., Zhou, D.-D., Wu, S.-X., Huang, S.-Y., Saimaiti, A., Yang, Z.-J., Gan, R.-Y., & Li, H.-B. (2023). The Role of Gut Microbiota in Anxiety, Depression, and Other Mental Disorders as Well as the Protective Effects of Dietary Components. Nutrients, 15(14), 3258. https://doi.org/10.3390/nu15143258
Xu, Q., Luo, G., Guo, J., Xiao, Y., Zhang, F., Guo, S., Ling, N., & Shen, Q. (2022). Microbial generalist or specialist: Intraspecific variation and dormancy potential matter. Molecular Ecology, 31(1), 161–173. https://doi.org/10.1111/mec.16217
Yang, K., Li, G., Li, Q., Wang, W., Zhao, X., Shao, N., Qiu, H., Liu, J., Xu, L., & Zhao, J. (2025). Distribution of gut microbiota across intestinal segments and their impact on human physiological and pathological processes. Cell & Bioscience, 15, 47. https://doi.org/10.1186/s13578-025-01385-y
Zhou, Z., Zhang, Y., Zheng, P., Chen, X., & Yang, Y. (2013). Starch structure modulates metabolic activity and gut microbiota profile. Anaerobe, 24, 71–78. https://doi.org/10.1016/j.anaerobe.2013.09.012
Additional Files
Posted
Categories
License
Copyright (c) 2026 Ethan Kuo

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.