Preprint / Version 1

Dark matter and its role in galaxy formation

##article.authors##

  • Kritika Kedlaya Cupertino High School

DOI:

https://doi.org/10.58445/rars.3653

Keywords:

dark matter, galaxy formation, lambdaCDM

Abstract

Dark matter is a core component of the Universe, allowing for the evolution of structure. Although the nature of dark matter is largely unknown because it does not interact with light, a wide range of observational evidence backs up its existence. This includes evidence from galaxy rotational curves, gravitational lensing, the Bullet Cluster, and the Cosmic Microwave Background (CMB). This review examines the role of dark matter in galaxy formation within the scope of the standard model of cosmology. Discussion for the particle candidates of dark matter, like axions, Weakly Interacting Massive Particles (WIMPs), and Massive Astrophysical Compact Halo Objects (MACHOs) are also included. The many proofs of dark matter, growth from primordial heat fluctuations, and the evolution of galaxies are outlined too. Further attention is given to the nature of galaxy evolution by discussing differences between early and late-type galaxies, in respect to metallicity and telescope observations. The paper concludes future prospects of understanding dark matter and its connection to galaxy formation.

References

Kelley K, Quinn PJ. A Radio Astronomy Search for Cold Dark Matter Axions. The Astrophysical Journal. 2017 Aug 3 [cited 2026 Jan 1];845(1):L4. Available from: https://doi.org/10.3847/2041-8213/aa808d

Chadha-Day F, Ellis J, Marsh DJE. Axion dark matter: What is it and why now? Science Advances. 2022 Feb 25 [cited 2026 Jan 2];8(8). Available from: https://www.science.org/doi/10.1126/sciadv.abj3618

Armendariz-Picon C, Neelakanta JT. How cold is cold dark matter? Journal of Cosmology and Astroparticle Physics. 2014 Mar 25 [cited 2026 Jan 4];2014(03):049–9. Available from: http://doi.org/10.1088/1475-7516/2014/03/049

Ruhl JE, Ade PAR, Bock JJ, Bond JR, Borrill J, Boscaleri A, et al. Improved Measurement of the Angular Power Spectrum of Temperature Anisotropy in the Cosmic Microwave Background from Two New Analyses of BOOMERANG Observations. Astrophysical Journal. 2003 Dec 20 [cited 2025 Nov 30];599(2):786–805. Available from: http://doi.org/10.1086/379345

Guth AH. Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D. 1981 Jan 15 [cited 2025 Dec 21];23(2):347–56. Available from: https://doi.org/10.1103/PhysRevD.23.347

Allahverdi R, Amin MA, Berlin A, Bernal N, Byrnes CT, Delos MS, et al. The First Three Seconds: A Review of Possible Expansion Histories of the Early Universe. The Open Journal of Astrophysics. 2021 Jan 29 [cited 2025 Nov 30];4(1). Available from: http://dx.doi.org/10.21105/astro.2006.16182

NASA. Cosmic History. science.nasa.gov. NASA; 2024 [cited 2025 Oct 21]. Available from: https://science.nasa.gov/universe/overview/

Riess AG. The expansion of the Universe is faster than expected. Nature Reviews Physics. 2019 Dec 18 [cited 2025 Dec 28];2(1):10–2. Available from: http://dx.doi.org/10.1038/s42254-019-0137-0

Galli D, Palla F. The Dawn of Chemistry. Annual Review of Astronomy and Astrophysics. 2013 Aug 18 [cited 2025 Nov 23];51(1):163–206. Available from: http://dx.doi.org/10.1146/annurev-astro-082812-141029

Bromm V. Formation of the first stars. Reports on Progress in Physics. 2013 Oct 30 [cited 2025 Dec 26];76(11):112901. Available from: https://doi.org/10.1088/0034-4885/76/11/112901

Vijaya GK. Original form of Kepler’s Third Law and its misapplication in Propositions XXXII-XXXVII in Newton’s Principia (Book I). Heliyon. 2019 Feb [cited 2026 Jan 2];5(2):e01274. Available from: https://doi.org/10.1016/j.heliyon.2019.e01274

Wu X, Kroupa P. Galactic rotation curves, the baryon-to-dark-halo-mass relation and space–time scale invariance. Monthly Notices of the Royal Astronomical Society. 2014 Nov 11 [cited 2025 Dec 27];446(1):330–44. Available from: https://doi.org/10.1093/mnras/stu2099

Bertone G, Hooper D. History of dark matter. Reviews of Modern Physics. 2018 Oct 15 [cited 2025 Dec 9];90(4). Available from: http://doi.org/10.1103/RevModPhys.90.045002

PhilHibbs. Expected (A) and observed (B) star velocities as a function of distance from the galactic center. Vol. 9, Frontiers for Young Minds. 2005 [cited 2025 Oct 14]. Available from: https://kids.frontiersin.org/articles/10.3389/frym.2021.576034

Bartelmann M, Schneider P. Weak gravitational lensing. Physics Reports. 2001 Jan [cited 2026 Jan 6];340(4-5):291–472. Available from: https://doi.org/10.1016/S0370-1573(00)00082-X

Schechter PL, Schnittman JD. Basic Elements of Strong Gravitational Lensing. Space Science Reviews. 2025 May 30 [cited 2025 Dec 23];221(4). Available from: http://doi.org/10.1007/s11214-025-01171-9

NASA, ESA. Illustration showing gravitational lensing producing supernova i - NASA Science . NASA Science. NASA; 2024 [cited 2025 Nov 15]. Available from: https://science.nasa.gov/image-detail/illustration-showing-gravitational-lensing-producing-supernova-i/

Roos M. Astrophysical and Cosmological Probes of Dark Matter. Journal of Modern Physics. 2012 [cited 2025 Nov 21];3(29):1152–71. Available from: http://doi.org/10.4236/jmp.2012.329150

NASA, ESA. Hubble Sees A Smiling Lens. NASA Image and Video Library. 2017 [cited 2025 Oct 27]. Available from: https://images.nasa.gov/details/GSFC_20171208_Archive_e000791

NASA, CXC, CfA, Markevitch M, ST-Scl, Magellan, et al. Bullet Cluster. Harvard University. 2006 [cited 2025 Nov 13]. Available from: https://chandra.harvard.edu/graphics/resources/handouts/lithos/bullet_lithos.pdf

Clowe D, Bradač M, Gonzalez AH, Markevitch M, Randall SW, Jones C, et al. A Direct Empirical Proof of the Existence of Dark Matter. The Astrophysical Journal. 2006 Aug 30 [cited 2025 Oct 29];648(2):L109–13. Available from: http://doi.org/10.1086/508162

Cha S, Cho BY, Joo H, Lee W, HyeongHan K, Scofield ZP, et al. A High-Caliber View of the Bullet Cluster Through JWST Strong and Weak Lensing Analyses. The Astrophysical Journal Letters. 2025 Jun [cited 2025 Nov 17];987:L15. Available from: http://doi.org/10.3847/2041-8213/add2f0

Aghanim N, Akrami Y, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, et al. Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics. 2020 Apr 6 [cited 2025 Sep 28];641(A6). Available from: https://doi.org/10.1051/0004-6361/201833910

Jones AW, Lasenby AN. The Cosmic Microwave Background. Living Reviews in Relativity. 1998 Sep 30 [cited 2025 Sep 20];1(1). Available from: https://doi.org/10.12942/lrr-1998-11

ESA, Planck Collaboration. Power spectrum of temperature fluctuations in the Cosmic Microwave Background. Esa.int. 2013 [cited 2025 Oct 5]. Available from: https://sci.esa.int/web/planck/-/51555-planck-power-spectrum-of-temperature-fluctuations-in-the-cosmic-microwave-background

Blumenthal GR, Faber SM, Primack JR, Rees MJ. Formation of galaxies and large-scale structure with cold dark matter. Nature. 1984 Oct [cited 2025 Oct 6];311(5986):517–25. Available from: https://doi.org/10.1038/311517a0

Chen SF, Howlett C, White M, McDonald P, Ross AJ, Seo HJ, et al. Baryon Acoustic Oscillation Theory and Modelling Systematics for the DESI 2024 results. Monthly Notices of the Royal Astronomical Society. 2024 Sep 6 [cited 2025 Sep 10];534(1):544–74. Available from: https://doi.org/10.1093/mnras/stae2090

Page L, Nolta MR, Barnes C, Bennett CL, Halpern M, Hinshaw G, et al. First‐Year Wilkinson Microwave Anisotropy Probe ( WMAP ) Observations: Interpretation of the TT and TE Angular Power Spectrum Peaks. The Astrophysical Journal Supplement Series. 2003 Sep [cited 2025 Nov 5];148(1):233–41. Available from: http://doi.org/10.1086/377224

International Gemini Observatory/NOIRLab/NSF/AURA/G. L. Bryan/M. L. Norman. The “cosmic web” predicted by numerical simulations of formation of structures in the universe. www.noirlab.edu. 2004 [cited 2025 Oct 13]. Available from: https://noirlab.edu/public/images/geminiann04007a/

Kunitomo M, Guillot T, Takeuchi T, Ida S. Revisiting the pre-main-sequence evolution of stars - I. Importance of accretion efficiency and deuterium abundance. Astronomy & Astrophysics. 2017 Feb 24 [cited 2025 Nov 10];599:A49. Available from: http://doi.org/10.1051/0004-6361/201628260

NASA. Star Basics. science.nasa.gov. NASA; 2024 [cited 2025 Nov 21]. Available from: https://science.nasa.gov/universe/stars/

Lamers HJGLM, Levesque EM. Hydrostatic Equilibrium and Its Consequences. In: Understanding Stellar Evolution. IOP Publishing; 2017 [cited 2025 Dec 30]. p. 3–13–6. Available from: https://doi.org/10.1088/978-0-7503-1278-3ch3

Langendorf R, Schneider S, Klein P. Extracting information from the Hertzsprung-Russell diagram: An eye-tracking study. Physical Review Physics Education Research. 2022 Sep 27 [cited 2025 Dec 22];18(2). Available from: https://doi.org/10.1103/PhysRevPhysEducRes.18.020121

Jofré P, Das P, Bertranpetit J, Foley R. Cosmic phylogeny: reconstructing the chemical history of the solar neighbourhood with an evolutionary tree. Monthly Notices of the Royal Astronomical Society. 2017 [cited 2025 Oct 30];467(1):1140–53. Available from: https://doi.org/10.1093/mnras/stx075

NASA. The Lives, Times, and Deaths of Stars - NASA Science. science.nasa.gov. 2020 [cited 2025 Nov 25]. Available from: https://science.nasa.gov/universe/the-lives-times-and-deaths-of-stars/

Pitjeva EV, Pitjev NP. Changes in the Sun’s mass and gravitational constant estimated using modern observations of planets and spacecraft. Solar System Research. 2012 Jan 22 [cited 2025 Dec 29];46(1):78–87. Available from: http://doi.org/10.1134/S0038094612010054

ESO. Hertzsprung-Russell Diagram. www.eso.org. 2007 [cited 2025 Nov 30]. Available from: https://www.eso.org/public/images/eso0728c/

Conselice CJ. The Evolution of Galaxy Structure Over Cosmic Time. Annual Review of Astronomy and Astrophysics. 2014 Aug 18 [cited 2025 Dec 12];52(1):291–337. Available from: http://doi.org/10.1146/annurev-astro-081913-040037

McDermott SD, Yu HB, Zurek KM. Constraints on scalar asymmetric dark matter from black hole formation in neutron stars. Physical Review D. 2012 Jan 13 [cited 2025 Dec 21];85(2). Available from: http://doi.org/10.1103/PhysRevD.85.023519

Fryer CL. Mass Limits For Black Hole Formation. The Astrophysical Journal. 1999 Sep [cited 2025 Nov 23];522(1):413–8. Available from: http://doi.org/10.1086/307647

Ueda Y. Cosmological evolution of supermassive black holes in galactic centers unveiled by hard X-ray observations. Proceedings of the Japan Academy Series B, Physical and Biological Sciences. 2015 May 9 [cited 2025 Dec 5];91(5):175–92. Available from: https://doi.org/10.2183/pjab.91.175

NASA. Evolution - NASA Science. science.nasa.gov. 2024 [cited 2025 Sep 15]. Available from: https://science.nasa.gov/universe/galaxies/evolution/

Shen Z, Wang A, Gong Y, Yin S. Analytical models of supermassive black holes in galaxies surrounded by dark matter halos. Physics Letters B. 2024 Jun 12 [cited 2025 Dec 23];855:138797. Available from: https://doi.org/10.1016/j.physletb.2024.138797

Benson AJ. Galaxy formation theory. Physics Reports. 2010 Oct [cited 2025 Nov 28];495(2-3):33–86. Available from: http://doi.org/10.1016/j.physrep.2010.06.001

NASA, ESA, CSA, STScI, Steve Finkelstein (UT Austin), Micaela Bagley (UT Austin), Rebecca Larson (UT Austin). 3D classifications for distant galaxies in Webb’s CEERS Survey (NIRCam image). ESA/Webb. 2024 [cited 2025 Dec 29]. Available from: https://esawebb.org/images/CEERS8/

Vaghmare K, Barway S, Mathur S, Kembhavi AK. Spiral galaxies as progenitors of pseudo-bulge hosting S0s. Monthly Notices of the Royal Astronomical Society. 2015 [cited 2025 Nov 30];450(1):873–82. Available from: https://doi.org/10.1093/mnras/stv668

Tsukui T, Iguchi S. Spiral morphology in an intensely star-forming disk galaxy more than 12 billion years ago. Science. 2021 May 20 [cited 2025 Oct 11];372(6547):1201–5. Available from: http://doi.org/10.1126/science.abe9680

Cowen R. Mature before Their Time. Science News. 2003 Mar 1 [cited 2025 Nov 17];163(9):139. Available from: https://doi.org/10.2307/4014315

Lotz JM, Jonsson P, Cox TJ, Primack JR. Galaxy merger morphologies and time-scales from simulations of equal-mass gas-rich disc mergers. Monthly Notices of the Royal Astronomical Society. 2008 Dec 11 [cited 2025 Dec 5];391(3):1137–62. Available from: https://doi.org/10.1111/j.1365-2966.2008.14004.x

Baker WM, Maiolino R, Bluck AFL, Belfiore F, Curti M, D’Eugenio F, et al. Different regulation of stellar metallicities between star-forming and quiescent galaxies – insights into galaxy quenching. Monthly Notices of the Royal Astronomical Society. 2024 Aug 31 [cited 2025 Nov 28];534(1):30–8. Available from: https://doi.org/10.1093/mnras/stae2059

Senchyna P, Stark DP, Charlot S, Plat A, Chevallard J, Chen Z, et al. Direct Constraints on the Extremely Metal-poor Massive Stars Underlying Nebular C IV Emission from Ultra-deep HST/COS Ultraviolet Spectroscopy. The Astrophysical Journal. 2022 May [cited 2025 Dec 6];930(2):105. Available from: https://doi.org/10.3847/1538-4357/ac5d38

Glover SCO, Klessen RS. The first stars. In: Encyclopedia of Astrophysics. Elsevier; 2026 [cited 2026 Jan 11]. p. 211–29. Available from: https://doi.org/10.1016/B978-0-443-21439-4.00076-6

Conroy C. Modeling the Panchromatic Spectral Energy Distributions of Galaxies. Annual Review of Astronomy and Astrophysics. 2013 Aug 18 [cited 2025 Dec 12];51(1):393–455. Available from: https://doi.org/10.1146/annurev-astro-082812-141017

Zaritsky D. The Relationships Among Mass, Metallicity, and Morphology for Spiral Galaxies. Publications of the Astronomical Society of the Pacific. 1993 [cited 2025 Dec 23];105(691):1006–10. Available from: https://doi.org/10.1086/133273

Downloads

Posted

2026-02-18

Categories